期刊文献+

板几何中一类具周期边界条件的奇异迁移算子的谱 被引量:2

The Spectrum of a Singular Transport Operator with Periodic Boundary Conditions in Slab Geometry
原文传递
导出
摘要 在Lp(1<p<∞)空间上研究了板几何中一类具周期边界条件下各向异性、连续能量、均匀介质的奇异迁移方程,证明了其相应的奇异迁移算子产生C0半群和该C0半群的Dyson-Phillips展开式的二阶余项是紧的,从而该算子的谱在区域Γ中由具有限重的离散本征值组成等结果. This paper is to research singular transport equations with anisotropic continuous energy homogeneous slab geometry for periodic boundary condition in slab geometry. It proves the transport operator generates a strongly continuous Co semigroup and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the Co semigroup in L^p (1〈 p 〈∞) space ,and to obtain the spectrum of the transport operator consist of isolate eigenvalues which have a finite algebraic multiplicity in trip Г .
出处 《数学的实践与认识》 CSCD 北大核心 2007年第6期160-165,共6页 Mathematics in Practice and Theory
基金 江西省自然科学基金(0311022)
关键词 奇异迁移方程 周期边界条件 CO半群 二阶余项 singular transport operator periodic boundary condition Co semigroup secondorder remained
  • 相关文献

参考文献3

  • 1Chabi M,Latrach K.On singular mono-energetic transport equations in slab geometry[J].Mathematical Methods in the Applied Sciences,2002,25:1121-1147.
  • 2Chabi M,Latrach K.Singular one-dimensional transport equations on Lp spaces[J].Journal of Mathematical Analysis and Applications,2003,283:319-336.
  • 3王胜华,马江山.板几何中一类具周期边界条件的奇异迁移方程[J].南昌大学学报(理科版),2005,29(4):313-320. 被引量:13

二级参考文献18

  • 1Chabi M, Mokhtar - Kharroubi M. Singular Neutron Transport Equation in L Space [M] , Preprint, 1995.
  • 2Chabi M and Latrach K. On Singular Mono Energetic Transport Equations in Slap Geometry [J]. Mathematical Methods in the Applied Sciences,2002,25:1 121 - 1 147.
  • 3Wang Shenghua,Yang Mingzhu and Xu Genqi. The Spectrum of the Transport Operator with Generalized Boundary Conditions [J]. Transport Theory and Statistical Physics, 1996 25 (7): 811 - 823.
  • 4Voigt J. A perturbation Theorem For the Essential Spectral Radius of Strongly Continuous Semigroups [J]. Monatshefte fur Math ematik, 1980,90:153 - 161.
  • 5Weis L W. A Generalization of the Vidav-Jorgens Perturbation Theorem for Semigroups and Its Application to Transport Theory [J]. Journal of Mathematical Analysis and Applications, 1988,129:6 - 23.
  • 6Greiner G. Spectral Properties and Asymptotic Behavior of the Linear Transport Equation [J]. Mathematische Zeitschrift, 1984, 185:167 - 177.
  • 7Khalid Latrach. On the Spectrum of the Transport Operator with Abstract Boundary Conditions in slab Geometry [J], Journal of Mathematical Analysis and Applications ,2000,252:1 - 17.
  • 8Khalid Latrach and Abdelkader Dehici. Spectral Properties and Time Asymptotic Behaviour of Linear Transport Equations in Slab Geometry [J]. Mathematical Methods in the Applied Sciences, 2001,24: 689 - 711.
  • 9Voigt J. On Resolvent Positive Operators and C0 -Semigroups on AL- Space[J]. Semigroup Forum, 1989,38:263 -266.
  • 10Mokhtar-Kharroubi M. Mathematical Topics in Neutron Transport Theory, New Aspects [A]. Advances in Mathematics and Ap plied Sciences 46 [C]. World Scientifie: Singapore, 1997.

共引文献12

同被引文献14

  • 1吴红星,王胜华.一类带抽象边界条件的迁移算子的谱[J].应用泛函分析学报,2013,15(2):109-117. 被引量:4
  • 2王胜华,马江山.板几何中一类具周期边界条件的奇异迁移方程[J].南昌大学学报(理科版),2005,29(4):313-320. 被引量:13
  • 3Chabi M,Latrach K.On singular mono-energetic transport equations in slab geometry[J].Mathematical Methods in the Applied Sciences,2002,25:1121-1147.
  • 4Chabi M,Latrach K.Singular one-dimensional transport equations on Lp spaces[J].Mathematical Analysis and Applications,2003,283:319-336.
  • 5Mokhtar-Kharroubi M.Mathematical Topics in Neutron Transport Theory[M].New Aspects.Advances in Mathematics and Applied Sciences.46,World Scientific:Singapore,1997.
  • 6阳名珠 朱广田.各向异性散射裂变的中子迁移算子的谱.中国科学,1981,(1):25-30.
  • 7Mokhtar-Kharroubi M. Time asymptotic behaviour an compactness in neutron transport theory[J]. Europ J Mech B Fluid, 1992, 11: 39-68.
  • 8. Latrach K, Dehici A. Spectral properties and time asymptotic behaviour of linear transport equa- tions in slab geometry[J]. Math Meth Appl Sci, 2001, 24: 689-711.
  • 9Jeribi A, Mahmoud S O, Sfaxi R. Time asymptotic behaviour for a one-velocity transport operator with Maxwell boundary condition[J].Acta Appl Math, 2007,3:163-179.
  • 10Latrach K, Megdiche H. Spectral properties and regularity of solutions to transport equations in slab geometry[J]. Math Meth Appl, Sci, 2006, 29: 2089-2121.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部