期刊文献+

基于PCA的传感器网络的故障诊断分析 被引量:2

Monitoring and Fault Diagnosis based on PCA for Sensor Networks
下载PDF
导出
摘要 主成分分析属多元统计方法,正逐步成为控制领域中一种重要的数据处理方法,用于生产监测和质量控制。本文简要地介绍了PCA中两种常用的图形分析法——Q图和主元得分法,利用统计软件——SPSS对数据进行处理,简化了复杂的运算过程,并对其数据处理过程进行了说明。最后,通过空压机远程监控系统传感器网络的实例模型,运用SPSS软件,说明了这一数据处理方式的简便、有效性和缺陷。 Principle component analysis is based on multi-statistics method, and turning into an important way to proceed data for production monitoring and quality control. The two significant analysis method in PCA--Q graph analysis and Principle component score graph analysis, are presented briefly. It is convenient and efficiency that utilizing the software SPSS to proceed the data and analyze the system performance. It predigests the complex intrinsic data process and clarities the meaning. IN the last part of the article, the example of the air compressor long-distance monitor system is used to illustrate the convenience and efficiency of PCA utilizing SPSS, at the same time its lacuna is extruded.
出处 《制造业自动化》 北大核心 2007年第3期79-81,共3页 Manufacturing Automation
关键词 主元分析法 故障诊断 空压机 传感器网络 Principle Component Analysis Fault Detection and Diagnosis Air Compressor Senor Networks
  • 相关文献

参考文献3

二级参考文献3

  • 1Martin, E. B., A. J. Morris and J. Zhang. Process pedonnatwe monitoring using multivariate statistical process control[J]. IEE Proc. of Control Theory and Application, 1996,143:132 - 144.
  • 2MacGregor, J.F. and T. Kourti. Statistical process control of multivariate process[ J]. Control Engineering Practice, 1995,3:403 - 414.
  • 3董爱华,王福忠,高岩.异步电机定子匝间短路故障微机检测[J].煤矿自动化,2000(2):6-7. 被引量:1

共引文献4

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部