期刊文献+

电晕放电辐射信号的小波包分析

Analyzing Corona Discharge Signals by Wavelet Packet
下载PDF
导出
摘要 分析了小波包的频率分解特性及信号分解后的频率分布范围,并将小波包变换与功率谱分析相结合,利用小波包将信号分解到各个频段,通过比较电晕放电信号与噪声信号在各频段的功率谱的区别得出电晕放电信号的频率分布范围,并提取出放电信号的波形。 The frequency characteristic and range decomposed by wavelet packet was analyzed. Combine the wavelet packet and power spectrum analysis together, first, decompose the signals by wavelet packet, then make the spectrum of every frequency band, compare the spectrum of corona discharge signals and noise signals. From this, we get the frequency range of the corona discharge and extract the wave of corona discharge.
出处 《电气应用》 北大核心 2007年第2期59-61,共3页 Electrotechnical Application
基金 国家自然科学基金重点项目50237040 军械工程学院科研基金项目YJJXM0424资助。
关键词 电晕放电 小波包 频带 噪声 corona discharge wavelet packet frequency band noise
  • 相关文献

参考文献3

  • 1[1]KopfU,FeserK.Rejection of narrow-band noise and repetitive pulses in on-site PD measurements[ J ].IEEE Transactions on Dielectrics and Electrical Insulation,1995,2 (6):1180-1191.
  • 2[2]Gabor D.Theory of communication[ M ].London:J Inst Electr Engin,1993,429-457.
  • 3薛蕙,杨仁刚,罗红.利用小波包变换实现电力系统谐波分析[J].电网技术,2004,28(5):41-45. 被引量:60

二级参考文献6

  • 1[1]Santoso S. Power quality assessment via wavelet transform analysis[J]. IEEE Trans on Power Delivery, 1996, 11(2): 924-930.
  • 2[2]Pham V L, Wong K P. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms[J] . IEE Proceedings of Generation, Transmission and Distribution, 1999, 146(3): 249-254.
  • 3[3]Pham V L, Wong K P. Antidistortion method for wavelet transform filter banks and nonstationary power system waveform harmonic analysis[J]. IEE Proceedings of Generation, Transmission and Distribution, 2001, 148(2): 117-122.
  • 4[4]Angrisani L, Daponte P, Apuzzo M D, Testa A. A measurement method based on the wavelet transform for power quality analysis[J]. IEEE Trans on Power Delivery, 1998, 13(4): 990-998.
  • 5[5]Daubechies I. Ten Lectures on Wavelet[M]. Society forIndustrial and AppliedMathmatics, Philadelphia(Pennsylvania), 1992.
  • 6[6]Chui C K. The Introduction to Wavelet[M]. Academic Press Inc., 1992.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部