摘要
对一类平面2n+1次微分系统进行定性分析,得到了其有限处奇点和无穷远奇点的性态,证明了系统闭轨的不存在性,并画出了二种参数条件下系统在Poincaré圆盘上的全局结构相图。
The nature state of the finite singular points and infinite singular points are obtained in view of qualitative analysis of planar differential system with 2n+1 degree. It proves the nonexistence of the limit cycle and draws a overall picture about global structure on the Poincar-disc.
出处
《湖南工业大学学报》
2007年第1期37-40,共4页
Journal of Hunan University of Technology
关键词
奇点
闭轨
Poincaré变换
全局结构
singular point
limit cycle
Poincaré transformation
global structure