期刊文献+

金属氢化物放氢过程数值分析 被引量:2

MATHEMATICAL MODEL AND NUMERICAL ANALYSIS FOR DESORPTION IN METAL HYDRIDE BED
下载PDF
导出
摘要 通过分析外壁处有恒温热源条件下贮氢合金放氢过程的传热现象,建立多孔介质的传热模型,研究分析了真空烧结的多孔贮氢复合材料放氢过程中温度场和速度场变化规律.计算结果表明,当反应焓变小于外界传入的热量时,温度逐渐上升.由于从内壁到外壁热阻很大,导致靠近内壁处温度难以上升,氢气也就难以释放,故为提高合金利用率,须减小传热间隔,并适当提高初始温度。氢气流速刚开始时大,很快趋于平稳.孔隙率对温度分布和流速影响很大,孔隙率越大,则气流速度更平缓易于控制,但使合金含氢量减小.选取合适的贮氢合金孔隙率对金属氢化物放氢过程较为关键. A diathermanous phenomena in metal hydride bed circled by constant high temperature was described in a mathematical and physical model. The FTCS format and first order upwind difference were employed to solve the conservation equations. The results show that it is necessary to increase the heat conduction coefficient and shorten the length of heat transfer path. The primary velocity of hydrogen is very large, but it would be calm soon. At the same time, the volume fraction of fibrous preform in porous materials strongly affects the distribution of hydride temperature and hydrogen velocity. So it is most important to select an appropriate porosity.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2006年第6期1023-1025,共3页 Journal of Engineering Thermophysics
关键词 贮氢合金 传热 数值模拟 多孔介质 hydrogen storage alloys heat transfer numerical simulation porous materials
  • 相关文献

参考文献6

  • 1V Guther,A Otto.Recent Developments in Hydrogen Storage Applications Based on Metal Hydrides.Journal of Alloys and Compounds,1999,293-295:889-892
  • 2大角泰章.金属氢化物的性质与应用[M].北京:化学工业出版社,1990.6.
  • 3A Isselhorst.Heat and Mass Transfer in Coupled Hydride Reaction Beds.Journal of Alloys and Compounds,1995,231:871-879
  • 4Kermal Aldas,Mahmut D Mat,Yuksel Kaplan.A ThreeDimensional Mathematical Model for Absorption in a Metal Hydride Bed.International Journal of Hydrogen Energy,2002,27:1049-1056
  • 5马捷,宋振方,王亚丛,苏永康.金属氢化物吸附和脱附过程的数值分析[J].上海交通大学学报,1999,33(8):1043-1046. 被引量:2
  • 6陈长聘,刘宾虹,敖鸣,雷永泉,王启东.复合贮氢材料技术研究[J].低温与特气,1999,17(3):29-32. 被引量:1

二级参考文献4

共引文献11

同被引文献25

  • 1房文斌,张文丛,于振兴,王尔德.镁基储氢材料颗粒尺寸对吸放氢动力学性能的影响[J].稀有金属材料与工程,2005,34(7):1017-1020. 被引量:8
  • 2林根文,周国治,李谦,程晓英,左仲.常压下催化合成氢化镁放氢动力学研究[J].稀有金属材料与工程,2006,35(5):802-805. 被引量:3
  • 3卢国俭,周仕学,ZHOU Zhuang-fei,雷桂芹,吴峻青.大容量镁基储氢材料及其储氢性能[J].现代化工,2007,27(4):65-67. 被引量:7
  • 4丰茂龙,黄家荣,范含林,等.美国舱外航天服热控技术研究进展[J].载人航天,2011(3):36-41.
  • 5Houy D, Steinshnider J, Davies T L. Fuel cell/Li-ion bat tery hybrid power system for the advanced space suit[C]// Proceeding of the 3rd International Energy Conversion En- gineering Conference. San Francisco: AIAA, 2005.. 121- 126.
  • 6Drost M K,Friedrich M. Miniature beat pumps for porta- ble and distributed space conditioning applications[C]// Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference. New Orleans= IEEE, 1997: 1271- 1274.
  • 7Joan C B. Performance analysis of combined micro-gas tur- bines and gas fired water/LiBr absorption chillers with post-eomhustion[J]. Applied Thermal Engineering, 2005, 25 (1) : 657-665.
  • 8Dexter P F,Haskin W L. Analysis of heat pump augmen- ted systems for spacecraft thermal eontrol[C] // Proceed-ings of AIAA 19th Thermo-physics Conference. Colorado: AIAA, 1984 : 25-28.
  • 9Larminie J,Dicks A. Fuel cell systems explained[M]. 2nd ed. West Sussex: Wiley, 2003.
  • 10Barbir F, Molter T,Dalton L. Efficiency and weight trade- off analysis of regenerative fuel ceils as energy storage for aerospace applications[J]. International Journal of Hydro- gen Energy,2005,30(4) :351-357.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部