期刊文献+

S连通空间及其性质 被引量:2

S-connected Space and Its Quality
下载PDF
导出
摘要 给出了拓扑空间是S连通空间的几个等价刻画,同时讨论了S连通子集及其性质,连通序列空间与S连通空间的性质,证明了拓扑空间X是S连通空间则X是连通序列空间的连续映象,连通序列空间的序列连续映象,连通序列空间的连续序列覆盖映象. We discuss topology space is several tantamount scores of S-connectedness, at the same time we also argue S-connected subset and its quality. And we point out the quality of the sequential space and connected space. We gain the results as follows: X is S-connected space, then X is an image of a connected sequential space under a continuous mapping, and X is an image of a connected sequential space under a sequential continuous mapping, and X is a image of a connected sequential space under a continuous sequential covering mapping.
机构地区 北华大学理学院
出处 《北华大学学报(自然科学版)》 CAS 2007年第2期97-100,共4页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金项目(10471021)
关键词 S连通空间 序列开集 序列空间 S-connected space Sequentially open set Sequential space
  • 相关文献

参考文献5

  • 1[1]Elisabetta M.Mangino.Space of N-homogeneous Poynomials between Spaces[J].Mathematical Analysis and Applications,2004,297:587-598.
  • 2林寿.连通度量空间的映象[J].数学年刊(A辑),2005,26(3):345-350. 被引量:11
  • 3[5]Fedeli,A,Le.Donne A.On Good Connected Preimages[J].Topology Appl,2002,125:489-496.
  • 4[6]Engelking R.General Topology(Revised and Completed Edition)[M].Berlin:Heldermannverlag,1989.
  • 5李进金,江守礼.关于局部可数网与ss映射[J].数学学报(中文版),1999,42(5):827-832. 被引量:6

二级参考文献19

共引文献15

同被引文献9

  • 1林寿.连通度量空间的映象[J].数学年刊(A辑),2005,26(3):345-350. 被引量:11
  • 2黄琴.序列连通空间[J].数学研究,2005,38(2):157-162. 被引量:9
  • 3黄琴.局部序列连通空间[J].广西大学学报(自然科学版),2007,32(1):84-88. 被引量:5
  • 4黄琴.Seq紧空间[J].莆田学院学报,2007,14(2):10-14. 被引量:4
  • 5[1]Huang Q,Lin S.Notes on Sequences Connected Spaces[J].Acta Math Hungar,2006,110(1-2):159-164.
  • 6[2]Fedel Ai,Le A Donne.On Good Connected Preimages[J].Topology Appl,2002,125:489-496.
  • 7[9]Franklin S P.Spaces in Which Sequences Suffice[J].Fund Math,1965,57(1):107-115.
  • 8[10]Engelking R.General Topology (Revised and Completed Edition)[M].Berlin:Heldermann Verlag,1989.
  • 9Qin Huang,Shou Lin. Notes on sequentially connected spaces[J] 2006,Acta Mathematica Hungarica(1-2):159~164

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部