期刊文献+

基于粒子群优化算法的城市日用水量预测模型 被引量:10

Forecast Model of Urban Daily Water Consumption Based on Particle Swarm Optimization
下载PDF
导出
摘要 结合城市日用水量影响因素的特点和变化规律,建立了城市日用水量预测模型,采用粒子群优化算法优化BP人工神经网络的连接权值,以求解该预测模型。经优化后的BP人工神经网络运算速度快、泛化能力强、预测精度高。实例验证结果证明该日用水量预测模型和求解方法是可行的。 Combined with the characteristics and variation rule of the factors influencing municipal daily water consumption, a forecast model for municipal daily water consumption was set up, then the particle swarm optimization was used to optimize BP artificial neural network to solve the model. The optimized BP artificial neural network model has advantageous properties such as more rapid calculation, high generalization performance and high accuracy. The experimental results prove the forecast model for daily water consumption and the solution are feasible.
出处 《中国给水排水》 CAS CSCD 北大核心 2007年第7期89-93,共5页 China Water & Wastewater
基金 国家自然科学基金资助项目(50278062 50578108)
关键词 城市日用水量 预测模型 粒子群优化算法 BP人工神经网络 泛化能力 municipal daily water consumption forecast model particle swarm optimization BP artificial neural network generalization performance
  • 相关文献

参考文献8

  • 1Virgil C A, David R M. Muhi-watfore method: A water demand forecasting system [ A ]. Optimizing the Resources for Water Management-Proceedings of the ASCE 17th Annual National Conference [ C ]. Texas: ASCE,1990.
  • 2WANG Q, HELLER M. Hybrid Box-Jenkins and neural network forecasting of potable water demand [ A ]. Proceedings of the 1996 Artificial Neural Networks in Engineering, ANNIE ,96 [ C ]. Missouri : ASME, 1996.
  • 3Beccali M, Cellura M,Lo Brano V,et al. Forecasting daily urban electric load profiles using artificial neural networks [ J ]. Energy Convers Manage, 2004,45 ( 18 ): 2879- 2900.
  • 4Liao G C,Tsao T P. Application of fuzzy neural networks and artificial intelligence for load forecasting[J]. Electric Power Systems Research ,2004,70 (3) :237 - 244.
  • 5王维斌,郑丕谔,李金勇.Application of BP NN and RBF NN in Modeling Activated Sludge System[J].Transactions of Tianjin University,2003,9(3):235-240. 被引量:6
  • 6Beccali M, Cellura M, Lo Brano V, et al. Forecasting daily urban electric load profiles using artificial neural networks[J].Energy Conver Manage,2004,45 (18) :2879- 2900.
  • 7杨道辉,马光文,刘起方,陶春华,过夏明.基于粒子群优化算法的BP网络模型在径流预测中的应用[J].水力发电学报,2006,25(2):65-68. 被引量:43
  • 8张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003..

二级参考文献16

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2张宏伟,岳琳,王亮.基于径向基函数的城市日用水量预测方法[J].天津大学学报,2006,39(4):486-489. 被引量:10
  • 3王亮,汪震,岳琳.基于粒子群优化算法的城市日用水量预测模型[J].中国给水排水,2007,23(7):89-93. 被引量:10
  • 4刘永,张立毅.BP和RBF神经网络的实现及其性能比较[J].电子测量技术,2007,30(4):77-80. 被引量:56
  • 5Kannan S,Mary Raja Slochanal S,Subbaraj P,Narayana Prasad Padhy.Application of particle swarm optimization technique and its variants to generation expansion planning problem[J].Electric Power Systems Research,2004,(70):203 ~ 210.
  • 6Chapman D;Gall R A B;Hill R D.Dynamic modeling and expert systems in wastewater engineering:trends problems needs,1989.
  • 7Gall R A B;Patry G G.Knowledge-based system for the diagnosis of an activated sludge plant,1989.
  • 8TONG R M;Beck M B Jr;Latten A.Fuzzy control of the activated sludge wastewater treatment process,1980(06).
  • 9Belanche J J;Valdes J;Comas I.Prediction of the bulking phenomenon in wastewater treatment plants[J],2000.
  • 10CAPODAGLIO A G;Jones H V;Novotny V.Sludge bulking analysis and forecasting application of system identification and artificial neural computing technologies,1991.

共引文献243

同被引文献59

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部