期刊文献+

基于频率和形状特征的脉冲重复间隔调制识别 被引量:15

Pulse Repetition Interval Modulation Recognition Based on Frequencies and Patterns
下载PDF
导出
摘要 根据雷达信号脉冲序列的特点,从雷达脉冲信号中提取频率特征和形状特征,构成二维特征向量,并用支持向量机设计多类别分类器,实现雷达信号PRI调制信号的自动识别,实验结果表明,对特征向量进行大幅度降维(从64维降到2维)后,既简化了分类器,又保持或提高了识别率和抗噪声性能.与原特征向量相比,对无噪样本的误识率从0.15%-0.25%降低到0.00%,对有噪样本的误识率从0.40%-1.30%降低到0.15%- 0.93%. According to the characteristics of pulse trains of radar signals, frequency and pattern are extracted from radar emitter signals. The two features constitute two-dimensional vectors, which are taken as inputs of a classifier designed by a support vector machine to identify the pulse repetition interval modulation of radar emitter signals automatically. Experimental results show that when the dimensions are lowered from 64 to 2, the extracted feature vector decreases the complexity of the classifier while maintaining or even enhancing the performances in recognition rate and noise suppression. Comparing to the original feature vector, the error rate of recognition of the extracted feature vector decreases from 0.15% - 0.25% to 0.00% for the samples without noises, and from 0.40% - 1.30% to0.15% - 0.93% for noised ones.
出处 《西南交通大学学报》 EI CSCD 北大核心 2007年第2期194-199,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(60572143)
关键词 识别 雷达信号 脉冲重复间隔 支持向量机 频率 形状 recognition radar signal pulse repetition interval support vector machine frequency pattern
  • 相关文献

参考文献12

  • 1NOONE G P.A neural approach to automatic pulse repetition interval modulation recognition[C]// Proceedings of International Conference on Information,Decision and Control,1999,213-218.
  • 2张葛祥,荣海娜,金炜东.支持向量机在雷达辐射源信号识别中的应用[J].西南交通大学学报,2006,41(1):25-30. 被引量:31
  • 3ZHANG Gexiang,RONG Haina,JIN Weidong,et al.Radar emitter signal recognition based on resemblance coefficient features[C]// Lecture Notes in Artificial Intelligence.Berlin:Springer Verlag,2004,3066:665-670.
  • 4王伟,杨晓玲.一种基于TOA差值矩阵的辐射源识别方法[J].航天电子对抗,2004,33(1):48-51. 被引量:5
  • 5NOONE G P.A neural approach to tracking radar pulse repetition interval modulation[C] //Proceedings of 6th International Conference on Neural Information Processing,1999,3:1 075-1 080.
  • 6MARDIA H K.New technique for the deinterleaving of repetitive sequences[J].IEE Proceedings,Part F:Communications,Radar and Signal Processing,1989,136(4):149-154.
  • 7MILOJEVIC D J,POPOVIC B M.Improved algorithm for the deinterleaving of radar pulses[J].IEE proceedings,Part F:Radar and Signal Processing,1992,139(1):98-104.
  • 8VAPNIK V.Statistical learning theory[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 9HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
  • 10FURNKRANZ J.Round robin classification[J].Journal of Machine Learning Research,2002,2(4):721-747.

二级参考文献17

  • 1ZHANGGexiang,JINWeidong,HULaizhao.Resemblance Coefficient Based Intrapulse Feature Extraction Approach for Radar Emitter Signals[J].Chinese Journal of Electronics,2005,14(2):337-341. 被引量:43
  • 2张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875. 被引量:14
  • 3[2]Mardi HK. New techniques for the deinterleaving of repetitive sequence[J]. IEE Proc. F, Commun. Radar & Signal Process, 1989,136(4) : 149~ 154.
  • 4[3]Milojevic DJ,Popovic BM. Improved algorithm for the deinterleaving of radar pulses[J]. IEE Proc. F, Radar & Signal Process,1992,139(1) :98~101.
  • 5[4]Nelson DJ. Special purpose correlation functions for improved signal detection and parameter estimation [C]. In Proceedings of International Conference on Acoustics, Speech and Signal Processing ( ICASSP93),1993:73~76.
  • 6[5]Pinaki Sankar Ray. A novel pulse TOA analysis technique for radar identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998,34 ( 3 ): 716 ~721.
  • 7Vapnik V. The nature of statistical learning theory[M]. New York: Springer Verlag, 1998.
  • 8Foody G M, Mathur A. A relative evaluation of multlclnss image classification by support vector machines C J ]. IEEE Transactions on C, eosclence and Remote Sensing, 2004, 42(6) : 1335-1343.
  • 9Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines [ J ]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
  • 10Riikin 1t M. Everything old is new again: a fresh look at historical approaches in machine learning[D]. Boston:Massachusettes Institute of Technology, 2002.

共引文献35

同被引文献101

引证文献15

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部