摘要
采用复变函数论方法,对Ⅰ型裂纹非对称动态扩展解的基本形式进行推导.用自相似函数的方法获得解析解的一般表达式,使问题相应地简化,并具有一定的普遍性.应用该法可以迅速地将所论问题转化为Keldysh-Sedov问题,而这一类问题容易用通常的Muskhelishvili方法解决.利用已获得的解析解和叠加原理,即可求得任意复杂问题的解.
By the methods of the theory of complex functions, radical format of solution to asymmetrically dynamic propagation of model Ⅰ crack was deduced. General representations of analytical solutions are obtained by the approaches of self-similar functions. The issues considered become accordingly simple and have definitive catholicity. By application of this method, the problems can be easily transformed into Keldysh-Sedov problems which are facilely resolved by the ways of Muskhelishvili. Utilizing superposition theorem, the solutions of arbitrarily complex problems could be acquired.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2007年第3期367-369,共3页
Journal of Harbin Institute of Technology
基金
中国博士后基金资助项目(2005038199)
黑龙江省自然科学基金重点资助项目(ZJG04-08)
关键词
Ⅰ型裂纹
非对称动态扩展
解析解
自相似
mode Ⅰ crack
asymmetrically dynamic propagation
analytical analytical solutions attained and acquired. solution
self-similar