期刊文献+

磁翻柱液位计中容栅传感器电容极板的优化设计 被引量:2

Optimum Design of the Polar of Capacitance Sensing Electrode Array in Magnetic Level Meter
下载PDF
导出
摘要 设计了一种新型容栅传感器,使磁翻柱液位计在更广泛的工况条件下,仍能准确地测量液位值并实现电信号远传.采用Hybrid-Trefftz有限元方法建立传感器中电场的数学模型,并精确地计算出磁翻柱翻转所引起的电容相对变化量.以此电容相对变化量为目标函数,分别对4种不同形状的电容极板和同形状不同结构参数的极板进行定量研究.从电容相对变化量随电容极板结构的变化曲线中,可知形状2且极板间距为5 mm为极板的最优形状.以此结构的样机进行实验,结果表明,此传感器极板结构的优化与实验相吻合,其仿真值与实验值的相对误差仅为3.3%. To enable magnetic level meter to measure the level accurately and transmit the electric signal under wider working conditions, a new type of capacitance array sensor is designed. Using Hybrid-Trefftz finite element method, the change of electrostatic field that happens between the electrodes of the sensor is analyzed, its mathematical model is established, and the relative variation of capacitance caused by the magnetic pole turning around can also be counted. Taken the relative variation of capacitance as an object function, there are four different types of electrodes that will cause different relative variation of capacitance. It is seen from the curves between the relative variation of capacitance and the structure of capacitance electrode that the second type of electrode with 5 mm space between electrodes is the optimum structure. The relative error between the simulation results and experimental values is only 3.3%, proving that the optimum design accords with the experiment.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2007年第1期121-126,共6页 Journal of Tianjin University(Science and Technology)
关键词 容栅传感器 Trefftz有限元 优化设计 capacitance array sensors Trefftz finite element optimum design
  • 相关文献

参考文献11

  • 1王习文,齐欣,宋玉泉.容栅传感器及其发展前景[J].吉林大学学报(工学版),2003,33(2):89-94. 被引量:28
  • 2Jirousek J,Leon N.A powerftl finite for plate bending[J].Comput Methods Appl Mech Eng,1977,12:77-96.
  • 3Jirousek J,Guex L.The Hybrid-Trefftz finite element model and its application to plate bending[J].Int J Numer Methods Eng,1986,23:651-693.
  • 4Jirousek J.Hybrid-Trefftz plate bending elements with pmethod capabilities[J].Int J Numer Methods Eng,1987,24:1367-1393.
  • 5Piltner R.Special finite elements with holes and internal cracks[J].Int J Nutner Methods Eng,1985,22:1471-1485.
  • 6Portela A.Charafi A.Trefftz boundary element method for domains with slits[J].Engineer Analysis with Boundary Elements 1997,20:299-304.
  • 7Lowther D A,Rajanathan C B,Silvester P P.A finite element technique for solving 2-D open boundary problems[J].IEEE Transactions on Magnetics,1978,14(5):467-469.
  • 8Halverson Derek,Friedman Gary,Tsukerman Igor.Local approximation matching for open boundary problems[J].IEEE Transactions on Magnetics,2004,40(4):2152-2154.
  • 9Mayergoyz I D,Chari M V C,Konrad A.Boundary method for 3D FEM[J].IEEE Trans on Mag,1983,19(6):2333-2336.
  • 10Dyimesi M,Lavers D,Pawlak T,et al.FE-Trefftz[J].IEEE Trans on Mag,1996,32(2):671-674.

二级参考文献17

共引文献27

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部