期刊文献+

转phaC叶绿体型烟草的光学属性 被引量:1

Optical Properties of phaC-Transgenic Tobacco
下载PDF
导出
摘要 为探讨光谱无损测试技术在转phaC叶绿体型烟草材料筛选中应用的可行性,对烟草品种Wisconsin38(Nic-otiana tobacum cv·Wisconsin38,对照)和其转phaC基因烟草无损活体测定了相对叶绿素含量(SPAD)、叶绿素荧光参数和反射率,并对测定结果进行了分析.结果表明:(1)PSⅡ有效光化学量子产量[(Fms-Fs)/Fms]和SPAD均表现为对照烟草大于转基因烟草,其中,(Fms-Fs)/Fms差异显著.(2)对照的反射率光谱大于转基因烟草.两者在350~690nm、750~1350nm和2113~2320nm反射率变异显著.(3)一些波长反射率与PSⅡ最大光化学量子产量(Fv/Fm)、有效光化学量子产量(Fms-Fs)/Fms和SPAD值达到显著相关.(4)光谱指数中,D730/D706与SPAD值相关系数达到了0·833.Area1190、P_Nd1280、R685/R630、(R683)2/(R675×R691.)与(Fms-Fs)/Fms达到显著相关.上述结果表明高光谱等无损测试技术在基因工程中应用是一个值得重视的方向. In order to investigate the feasibility of applying hyper-spectrum non-destruction technique in the screening of phaC-transgenic tobacco germplasms, non-destruction and in vivo measurements of the relative chlorophyll content (SPAD) and chlorophyll fluorescence and reflectance of Nicotinana tobacum cv.Wisconsin 38 and its phaC-transgenic counterpart were determined non-destructively. The yield of quantum efficiency [(Fms-Fs)/Fms] and SPAD were significantly greater in Wisconsin 38 than in phaC-transgenic tobacco. Plant reflectance in Wisconsin 38 was greater than that in phaC-transgenic tobacco, the difference being significant in the visible and infrared regions of 350-690 nm, 750-1350 nm and 213-2 320 nm. In some wavelength regions, significant correlation coefficients were recorded in reflectance and maximal photochemical efficiency (Fv/Fm), [-(Fms-Fs)/Fms] and SPAD. The correlation coefficient between D730/D706 and SPAD was 0. 833. (R638)2/(R675×R691) was the best index for its significant correlation with chlorophyll fluorescence and SPAD. These results suggest that the application of non-destructive techniques like hyper-spectrum in genetic engineering merits further study.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期43-48,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(40301035) 国家"863"计划资助项目(2004AA115190 2002AA213051)
关键词 转基因 烟草 相对叶绿素含量 叶绿素荧光指数 反射率 光谱指数 transgenic tobacco relative chlorophyll content chlorophyll fluorescence parameters reflectance spectral indices
  • 相关文献

参考文献19

  • 1赵德华,李建龙,宋子键.高光谱技术提取植被生化参数机理与方法研究进展[J].地球科学进展,2003,18(1):94-99. 被引量:23
  • 2康国章,郭天财,朱云集,王晨阳,王永华,刘尊英,王之杰.不同生育时期追氮对超高产小麦生育后期光合特性及产量的影响[J].河南农业大学学报,2000,34(2):103-106. 被引量:67
  • 3张金恒,王珂,王人潮.高光谱评价植被叶绿素含量的研究进展[J].上海交通大学学报(农业科学版),2003,21(1):74-80. 被引量:60
  • 4[4]Morales F,Belkhoja R,Goulas Y,et al.Remote and Near-Contact Chlorophyll Fluorescence During Photosynthetic Induction in Iron-Deficient Sugar Beet Leaves[J].Remote Sensing of Enviroment,1999,69:170-178.
  • 5[5]Maxwell K,Johnson G N.Chlorophyll Fluorescence-a Practical Guide[J].Journal of Experimental Botany,2000,51:659-668.
  • 6[6]Peterson R B,Havir E A.The Multiphasic Nature of Nonphotochemical Quenching:Implications for Assessment of Photosynthetic Electron Transport Based on Chlorophyll Fluorescence[J].Photosynthesis Research,2004,82:95-107.
  • 7林世青,许春辉,张其德,徐黎,毛大璋,匡廷云.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16. 被引量:334
  • 8[8]Berges J A,Charlebois D O,Mauzerall D C,et al.Differential Effects of Nitrogen Limitation on Photosynthetic Efficiency of Photosystems Ⅰ and Ⅱ in Microalgae[J].Plant Physiology,1996,110:689-696.
  • 9[9]Krause G H,Weis E.Chlorophyll Fluorescence and Photosynthesis:The Basic[J].Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:313-349.
  • 10[10]Gamon J A,Filella I,Penuelas J.The Dynamic 531-Nanometer.Reflectance Signal:a Survey of Twenty Angiosperm Species[J].Current Topics in Plant Physiology,1993,8:127-177.

二级参考文献78

  • 1唐万龙,杨相恒,雷浣群,李显军.应用光谱特性建立冬小麦氮磷元素丰缺和产量预报模型的研究[J].遥感技术与应用,1993,8(3):8-14. 被引量:4
  • 2Qi J,Remote Sens Environ,1993年,44卷,89页
  • 3Goetz S J, Prince S D, Goward S N, et al. Satellite remote sensing of primary production: An improved production efficiency modeling approach [J]. Ecological Modelling, 1999, 122: 239-255.
  • 4Ceccato P, Flasse S, Tarantola, et al. Detecting vegetation leaf water content using reflectance in the optical domain [J]. Remote Sensing of Environment, 2001, 77: 22-33.
  • 5Gamon J A, Field C B, Golden M L, et al. Relationship between NDVI, canopy structure and photosynthesis in three Californian vegetation typers [J]. Ecological Applications, 1995, 5: 28-41.
  • 6Jago R A, Mark E J C, Curran P J. Estimation canopy chlorophyll concentration from field and airborne spectra [J]. Remote Sensing of Environment, 1999, 68: 217-224.
  • 7Jacquemoud C, Bacour C, Poilve H, et al. Comparison of four radiative transfer models to simulate plant canopied reflectance: Direct and inverse mode [J]. Remote Sensing of Environment, 2000, 74:471-481.
  • 8Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages [J]. Remote Sensing of Environment, 2002, 81: 331-354.
  • 9Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status [J]. Trends in Plant Science, 1998, 3(4): 151-156.
  • 10Merzlyak M N, Gitelson A A, Chivkunova O B, et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening [J]. Physiologia Plantarum, 1999, 106:135-141.

共引文献1045

同被引文献16

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部