期刊文献+

修正指数遗忘RLS算法及其在故障诊断上的应用 被引量:3

Self-Adjustable Exponential Forgetting Recursive Least Square Algorithm for Fault Diagnosis
下载PDF
导出
摘要 汽车电子系统在线故障诊断的算法执行效率、动态跟踪速度和稳态估计精度是检测突变故障参数的关键指标。针对基于参数估计故障诊断中常用的递推最小二乘RLS算法存在的典型问题,提出了一种在线修正遗忘因子的方法。理论分析和仿真结果均表明,修正后的方法能有效解决一般递推算法的“数据饱和”问题,与通常的遗忘算法和滑动数据窗法相比,表现出了明显的优越性。为进一步的实车故障诊断提供了更加有效的理论根据。 To detect abrupt parameter effectively, rapidly and accurately is quite crucial for online fault diagnosis based on parameter estimarion methods. An ameliorative adaptive algorithm named SAEFRLS (Self- Adjustable Exponential Forgetting Reeursive Least Square) algorithm is suggested here to avoid problems that traditional RLS (Recursive l.east Square) algorithm can not solve. In the application of fault diagnosis, SAEFRLS algorithm is not only capable of solving " data saturation" problem, but also attesting to be of significant advantage o ver traditional Exponential Forgetting RLS and Sliding- Window BI.S algorithm, which provides theoretical basis to real-time fault diagnosis more effectively, rapidly and accurately.
出处 《计算机测量与控制》 CSCD 2007年第3期329-331,共3页 Computer Measurement &Control
基金 国家"863计划"资助项目(2005AA501010)
关键词 在线故障诊断 RLS算法 修正指数 遗忘因子 应用 汽车电子系统 递推最小二乘 参数估计 self-adjustable exponential forgetting RLS algorithm fault diagnosis) parameter estimation RLS algorithm abrupt faults
  • 相关文献

参考文献4

  • 1Astrom K J,Wittenmark B 自适应控制(英文影印版)[M].北京:科学出版社,2003.
  • 2Isermann R Model based fault detection and diagnosis methods[J].Washington;ACE,1995:1605-1 609.
  • 3Simani S,Fantuzzi C,Patton R J.Model-based fault diagnosis in dynamic systems using identification techniques[M].London:SpringerVedag.2003.
  • 4Jiang J,Zhang Y M A revisit to block and reeursive least squares for parameter estimation[J].International Journal of Computer and Electrical Engineering,2004,30(5):403-416.

同被引文献12

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部