期刊文献+

时滞偏差分方程的振动准则(英文)

Oscillation Criteria of Delay Partial Difference Equations
下载PDF
导出
摘要 考虑时滞偏差分方程Am+1,n+Am,n+1-Am,n+∑ from i=1 to u (pi(m,n)Am-ki,n-li)=0,m,n∈N0,其中liminfm,n→∞pi(m,n)=pi∈[0,∞).给出了上述时滞偏差分方程所有解振动的新的充分条件. Consider the delay partial difference equation Am+1,n+Am,n+1-Am,n+∑i=1^nPi(m,n)Am-ki,n-1i=0,m,n∈No,where liminfm,n→∞ Pi(m, n) = pi ∈ [0, ∞ ) . Some new sufficient conditions for the oscillation of all solutions of the above equation are established.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2007年第1期10-12,15,共4页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金资助项目(10371103) 湖南省教育厅资助项目(04A055)
关键词 振动性 正解 时滞偏差分方程 oscillation positive solution delay partial difference equations
  • 相关文献

参考文献14

  • 1Courant R,Fridrichs K,Lewye H.On psrtial difference equations of mathematical physics[J].IBM J,1967(11):215-234.
  • 2LI X P.Partial difference equations used in the study of molecular orbits[J].Acta Chimica Sinica,1982,40:688-698.
  • 3ZHANG B G,Agarwarl R P.The oscillation and stability of delay partial difference equationa[J].Computers Math Applic,2003,45:1 253-1 295.
  • 4Agarwal R P,Wong P J Y.Advanced Topics in Difference Equations[M].Dordrecht:Kluwer Academic Publishers,1997.
  • 5Agarwal R P,Grace S R,Regan D O'.Oscillation Theory for Difference and Functional Differential Equations[M].Dordrecht:Kluwer Academic Publishers,2000.
  • 6Agarwal R P,Popenda J.On the oscillation of recurrence equations[J].Nonlinear Analysis,1999,36:231 - 268.
  • 7Domshlak Y,Cheng S S.Sturmian theorems for a partial difference equation[J].Functional Differential Equations,1996,3:83-97.
  • 8ZHANG B G.Oscillation theorems for certain nonlinear delay partial difference equations[J].Nonlinear Analysis,2000,41:447-454.
  • 9Wong P J Y,Agarwal R P.Nonexistence of unbounded non-oscillatory solutions of partial difference equations[J].J Math Anal Appl,1997,214:503-523.
  • 10Wong P J Y,Agarwal R P.Oscillation criteria for nonlinear partial difference equations with delays[J].Computers Math Applic,1996,32(6):57-86.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部