期刊文献+

原子钟噪声的蒙特卡络模拟方法 被引量:3

Monte Carlo Method Applied to Simulation of Atomic Clock Noise
下载PDF
导出
摘要 讨论了原子钟噪声的蒙特卡络模拟方法.具体过程是:先产生模拟所需的正态分布随机数,从实际钟的阿仑方差估算出噪声电平,然后用1组递点函数产生高质量的模拟钟时差的随机序列.在对1台商品铯钟进行具体模拟后,给出了真实数据与模拟值的阿仑方差之问的相符程度,最后对实际问题进行了分析. In this paper, it is discussed in detail that a simulation method to various noises in atomic clock, and a solution of simulation time difference from random noise and linear frequency draft is given. The Monte Carlo method suits numberiai computation.The key of the method is to find a probability model and to generate a random time sequence.The simulating procedure is as follows: First to generate the normal distribution random numbers, then, to estimate the noise intensity from the allan variance of actual clock and to find the random Sequence of simulating time difference from a group of recurrence functions.At last, the simulation to commercial Ceisum beam atomic clock is carried out. The results show that the actual data are in agreement with the simulate data in the Allan variance.This method is more suitable to clock simulation in short term noise, since the long term change is more complicated. The environment condition of clock and the abrupt changes in the future should be considered. and the results of simulation would be more effective and feasible.
作者 孙宏伟
出处 《陕西天文台台刊》 CSCD 1996年第1期33-37,共5页 Publications of The Shaanxi Astronomical Observatiory
基金 陕西天文台青年时频信号处理实验室资助
关键词 随机数 噪声 蒙特卡罗法 模拟法 原子钟 Red Noise Monte Carlo Method
  • 相关文献

参考文献4

  • 1Wei Guo,Proc of 1992 IEEE Inter Freq Contr Sym
  • 2孙宏伟,Proc of 1994 IEEE Inter Freq Contr Sym
  • 3方再根,计算机模拟和蒙特卡洛方法
  • 4黄秉英,时间频率的精确测量

同被引文献16

  • 1冯爱明,林敏.利用几何插值法合成1/f噪声[J].中国计量学院学报,2002,13(2):109-112. 被引量:7
  • 2寇艳红,张其善.GPS接收机中晶振误差的模拟方法[J].电子与信息学报,2004,26(8):1319-1324. 被引量:20
  • 3Donald B Percival. Stochastic models and statistical analysis for clock noise [J]. Metrologia, 40 (2003): S289-S304.
  • 4Davis J A, Greenhall C A, Stacey P W.A Kalman filter clock algorithm for use in the presence of flicker frequency modulation noise[J]. Metrologia, 2005, 42 (1): 1-10.
  • 5Galleani I, Sacerdote I, Tavella Pet al. A mathematical model for the atomic clock error[J].Metrologia, 2003, 40 (3): 257-264.
  • 6Galleani I, Tavella P. On the use of the Kalman filter in timescales[J].Metrologia, 2003, 40 (3): 326-334.
  • 7[1]Parkinson B W,Spilker J J,Jr..Global Positioning System:Theory and Applications(Volume I),Washington,AIAA,1996,chapter4,chapter 8.
  • 8[2]Zarlink Semiconductor,GP2000 GPS receiver hardware design,Application Note AN4855 Issue2.0(Oct.1999),http://www.zarlink.com/appnotes/,2003,1-54.
  • 9[3]Vig J R.Quartz crystal resonators and oscillators for frequency control and timing applicationsA tutorial,AD A328861 Rev.8.4.2.U.S.Army Communications-Electronics Command(CECOM),Fort Monmouth,NJ 07703,USA,http://www.ofc.com/catalog/vig/ Vig-tutorial-files/,Jan.2000,chapter 4,chapter 8.
  • 10[4]Corbell P M.Design and validation of an accurate GPS signal and receiver truth model for comparing advanced receiver processing techniques [MS thesis],AFIT,OH,March 2000,chapter2.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部