期刊文献+

知识引导几何动态轮廓线算法与MR心脏序列图像鲁棒分割

Knowledge Guided Geometric Active Contour Model and Robust Segmentation of Left Ventricle from Cardiac MR Image Sequences
下载PDF
导出
摘要 从MR心脏三维动态序列图像中快速精确分割左心室内边界是心功能计算机辅助诊断的重要步骤。由于心室边界的模糊性,传统的基于灰度或曲线演化的方法很难保证分割结果的鲁棒和精确。在分割模型中整合解剖结构和医生经验的先验知识,对提高分割结果对噪声和模糊边界的鲁棒性,改善计算效率非常重要。本研究提出了一种广义模糊几何动态轮廓线分割算法(GF-GACM),并利用基于水平集的概率形状模型,整合医生手动分割训练集的先验知识。对多套临床数据集的实验结果显示,本研究算法的分割结果和专家手动分割结果比较在临床诊断允许误差范围内。 Segmentation of left ventricle from cardiac MR image sequences is the most important initial step in the computer aided diagnosis of heart function. Due to the fuzziness of ventricle borders, traditional gray level based or curve evolving methods often fail to ensure the robustness and accuracy of the results. It is commonly recognized that the incorporation of prior anatomy knowledge and expertise is very important to improve the robustness to noises and computational efficiency of segmentation algorithms. This paper proposes a new Generalized Fuzzy Geometric Active Contour Model by a level set based method of incorporating prior shape information from expert manual segmentation. Experiments on several clinical cardiac MRI data sets showed that results of the proposed algorithm are acceptable for clinical diagnosis.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2007年第2期244-249,共6页 Chinese Journal of Biomedical Engineering
基金 国家重大基础研究计划(973计划)(NO.2003CB716104) 广东省科技计划资助项目(2003B30605)
关键词 图像分割 几何动态轮廓线 先验形状模型 左心室 image segmentation geometric active contour model prior shape model left ventricle
  • 相关文献

参考文献12

  • 1Osher S,Sethian J.Fronts propagating with curvature-dependent speed:algorithm based on Hamilton-Jacobi formulations[J].Journal of Computational Physics,1988,79:12-49.
  • 2Caselles V,Catte F,Coll T.et al,A geometric model for active contours[J].Numerische Mathematik,1993,66:1-31.
  • 3Chen Wu Fan,Lu Qin Xian,Chen Jian Jun.The new approach to edge detecting of color image[J].Science in China (A series),1995,25(2):219-225.
  • 4周寿军,梁斌,陈武凡.心脏序列图像运动估计新方法:基于广义模糊梯度矢量流场的形变曲线运动估计与跟踪[J].计算机学报,2003,26(11):1470-1478. 被引量:15
  • 5Chen Wufan,Zhou Shoujun,Liang Bin.LV contour tracking in MRI sequences based on the generalized fuzzy GVF[A].In:International Conference on Image Processing[C].Singapore:IEEE Computer Society,2004,1:373-376.
  • 6Xu C,Prince J L.Snakes,Shapes,and Gradient Vector Flow[J].IEEE Transactions on Image Processing,1998,7(3):359-369.
  • 7Paragios N,Mellina G,Ramesh V.Gradient Vector Flow Fast Geometric Active Contours[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(3):402-407.
  • 8Leventon M E.Statistical shape influence in geodesic active contours[A].In:IEEE Transactions Conference on Computer Vision and Pattern Recognition[C].California:IEEE Computer Society,2000,1:1316-1323.
  • 9Paragios N.Shape-based segmentation and tracking in cardiac image analysis[J].IEEE Trans.Medical Imaging,2003,24(5):773-776.
  • 10Osher Stanley J,Paragios Nikos.Geometric Level Set Methods in Imaging Vision and Graphics.Berlin:Springer Verlag[M].2003.

二级参考文献22

  • 1陈宝林.最优化理论与算法[M].北京:清华大学出版社,1998..
  • 2Wooten W L, Hodgins J K. Animation of human diving. European Association for Computer Graphics Forum, 1996, 15(1): 3~13
  • 3Storvik G. A Bayesian approach to dynamic contours through stochastic sampling and simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(10): 976~986
  • 4Mathurin R, Rottembourg B. A combinatorial approach for rain cell tracking. In: Proceedings of the 12th International Conference and Workshops on Applied Geologic Remote Sensing, Denver, USA, 1997. 3240~3252
  • 5Peterfreud N. The velocity snake: Deformable contour for tracking in spatio-velocity space. International Conference on Computer Vision and Image Understanding, 1998, 73(3): 346~356
  • 6Takahashi Kazuhiko, Sakaguchi Tatsumi, Ohya Jun. Real-time estimation of human body postures using kalman filter. In: Proceedings of the 8th International Workshop on Robot and Human Interaction, Pisa, Italy, 1999. 211~220
  • 7Nickels Kevin, Hutchinson Seth . Model-based tracking of complex articulated objects. IEEE Transactions on Robotics and Automation, 2001, 17(1): 28~36
  • 8Jr T S D, Prince J L. Optimal brightness functions for optical flow estimation of deformable motion. IEEE Transactions on Image Processing, 1994, 3(2): 178~191
  • 9Duncan J S,Owen R L, Staib L H, Anandan P. Measurement of non-rigid motion using contour shape descriptors. In:Proceedings of IEEE Computer Vision & Pattern Recognition, Maui, HI, 1991,18T: 318~324
  • 10Kass M,Witkin A, Terzopoulos D. Snakes: Active contour modes. International Journal of Computer Vision,1988, 1(4): 321~331

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部