摘要
对于半定自共轭四元数矩阵的Lowner偏序,本文证得了A≤B的四种刻划,并将文「5」中的三个结果推广天实四元数除环上。
Let H be the quaternion field, and H(n, ≥) = { A ∈Hn×n | A is a self--eoniugate matrix, and X AX≥0 X∈Hn×1}. In this paper, We prove the fcllowing results.
Theorem 2. Let A, B∈H(n,≥). Then the following statements are equtivalent :
1 ) A≤B; 2 ) Rr ( A ) Rr ( B ) , and B ( B-A ) B≥0;
3)Rr(A) Rr(B), and λ1 (AB-)≤1;
4)Rr(A) Rr(B), AB-A≤A; 5)There exists PEGLn (H)Such that
where O〈A=diag( λ1,…,λt)≤It, and t≤r.
Theorem 3. Let A, B, C∈H)n, ≥), If Rr (A) r (C) Rr (C), and ACA≤BCB, then A≤B. Conversely, if A≤B, then there exists CEH(n,≥) ∩GLn(H) such that ACA≤BCB.
出处
《漳州师院学报》
1996年第4期1-6,共6页
Journal of ZhangZhou Teachers College(Philosophy & Social Sciences)
基金
福建省自然科学基金资助课题.
关键词
四元数矩阵
循征值
Lowner偏序
除环
positive semidefinite self--conjugate quaternion matrix, Lownerts partial ordering, positive semidefinite square root, characteristic value.