期刊文献+

两种约化密度矩阵重构方法的理论分析

Theoretical Analysis of Two Reconstruction Schemes of Reduced Density Matrices
下载PDF
导出
摘要 利用Harris模型,详细分析了Mazziotti提出的重构方法和Chen提出的一种由低阶约化密度矩阵重构高阶约化密度矩阵的系统方法(Sciencein China B,2006,49:402)的差异.如果忽略Mazziotti方法中的^3△M、^4△M和Chen方法中的^3△M、^4△M计算结果显示两种方法的计算误差相近.更好的近似是只忽略四级项^4△M、^4△M而三级项由相应的四级项通过简缩来计算.采用Mazziotti方法计算出来的有些近似值和精确值连正负号都不同,而用Chen方法计算出来的近似值和精确值不仅正负符号一致,而且数值大小也很接近. The effectiveness of the approach for systematical reconstruction of higher order reduced density matrices with lower order ones, which was developed by Chen (Science in China B, 2006, 49: 402), was compared theoretically with that of Mazziotti's method through Harris model. In the case of omitting the cumulant terms ^3△M,^4△M in the latter and the normal product terms ^3△M,^4△M in the former, it was found that the errors from both approaches were comparable. As a better approximation, if only fourth-order terms ^4△Mand^4△M in both methods are neglected whereas the third-order terms ^3△M and ^3△ are computed from their corresponding fourth-order terms ^4△M and^4△M respectively through contractions, the results calculated with Chen's approach not only have the correct signs but also are very close to the exact normal products ^3△ whereas some of the results calculated with Mazziotti's method do not even have the correct signs with respect to the exact cumulants ^3△M.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第4期543-548,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20473011) 北京科技大学(00007414) 教育部留学基金(11140036)资助项目
关键词 约化密度矩阵 简缩Schrodinger方程 正规乘积 累计量 Reduced density matrix Contracted Schrodinger equation Normal product Cumulant
  • 相关文献

参考文献23

  • 1徐光宪 黎乐民 等.量子化学(中册)[M].科学出版社,1985..
  • 2Dirac,P.R.M.Proc.Camb.Phil.Soc.,1930,26:376; 1931,27:240
  • 3Lowdin,P.O.Phys.Rev.,1955,97:1474
  • 4Davidson,E.R.Reduced density matrices in quantum chemistry.New York:Academic Press INC.,1976
  • 5Cioslowski,J.Many-electron densities and reduced density matrices.Boston:Kluwer,2000
  • 6Cohen,L.; Frishberg,L.Phys.Rev.A,1976,13:927
  • 7Nakatsuji,H.Phys.Rev.A,1976,14:41
  • 8Harriman,J.E.Phys.Rev.A,1979,19:1893
  • 9Valdemoro,C.Phys.Rev.A,1992,45:4462
  • 10Colmenero,F.; Pérez del Valle,C.; Valdemoro,C.Phys.Rev.A,1993,47:971

二级参考文献25

  • 1徐光宪 黎乐民 等.量子化学(中册)[M].科学出版社,1985..
  • 2Davidson E R. Reduced Density Matrices in Quantum Chemistry.New York: Academic, 1976.
  • 3Cioslowski J, ed. Many-Electron Densities and Reduced Density Matrices. Boston: Kluwer, 2000
  • 4Coleman A J. Structure of Fermion density matrices. Rev Mod Phys, 1963, 35:668-687
  • 5Sasaki F. Eigenvalues of Fermion density matrices. Phys Rev,1965, 138:1338-1342
  • 6Weinhold F, Wilson E B. Reduced density matrices of atoms and molecules, Ⅱ. On the N-representability problem. J Chem Phys,1967, 47:2298-2311
  • 7Kummer H. N-Representability problem for reduced density matrices. J Math Phys, 1967, 8:2063-2081
  • 8Davidson E R. Linear inequality for density matrices. J Math Phys,1969, 10:725-734
  • 9McRae W B, Davidson E R. Linear inequality for density matrices.Ⅱ. J Math Phys, 1972, 13:1527-1538
  • 10McRae W B, Davidso E R. An algorithm for the extreme rays of a pointed convex polyhedral cone. SIAM J Comput, 1973, 2: 281-293

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部