期刊文献+

基于改进活动轮廓模型的超声图像分割

Ultrasound Image Segmentation Based on Improved Active Contour Model
下载PDF
导出
摘要 活动轮廓模型被广泛应用于医学图像分割之中,文中提出了一种改进的快速活动轮廓分割法。原算法在优化过程中容易缩成一点,其初始轮廓必须给定在图像边缘附近,改进的快速活动轮廓算法给出了不同于原算法的内部能量函数,并增加一自适应的约束力,扩大了算法捕捉图像特征的范围。实验结果表明:该算法快,能在更大的范围内捕捉图像特征,是一种有效的分割超声图像的算法。 Active contour model is widely used in medical image segmentation, an improved parametric active contour model is proposed. The original model is easy to be a dot in the optimize process and the initial contour must be set near the edge of the image. The improved fast active contour method by introducing an internal energy function different from before and an automatic external force is added to the target function. The experiment results demonstrate that this algorithm is characterized by its rapidity and capacity which can capture the image feature in a wider region, and is an effective algorithm for segmenting the ultrasound image.
出处 《科学技术与工程》 2007年第8期1638-1641,共4页 Science Technology and Engineering
基金 四川自然科学基金(05H457)资助
关键词 超声图像分割 活动轮廓模型 SNAKE 能量函数 ultrasound image segmentation active contour model snake energy function
  • 相关文献

参考文献8

  • 1[1]田捷,包尚联,周明全.医学图像处理与分析.北京:电子工业出版社,2003:35-37
  • 2[2]Kass M,Witkin A,Terzopoulos D.Snake:active contour models.International Journal of Computer Vision,1998; 1 (4):321 -331
  • 3李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 4[4]Cohon L D.On active contour models and balloons CVGIP:Image Understanding 1991 ;53(2):211-218
  • 5[5]Yong A A,Kraitchman D L,et al.Tracking and finite element analysis of stripe deformation in magnetic resonance tagging IEEE Trans on Medical Imaging,1995 ;14(3):413-421
  • 6[6]Gunn S R,Nixon M S.A robust snake implementation:a dual active contour.IEEE Trans on Patter Analysis and Machine Intelligence,1997;19(1):63-68
  • 7[7]Xu C,Prince J L.Snake,shapes and gradient vector flow.IEEE Trans on Imaging Processing,1998 ;7(3):359-369
  • 8[8]Williams D J,Shab M.A fast algorithm for active contours and curvature estimation.CV GIP:Image Understanding,1992;55(1):14-26

二级参考文献9

  • 1Xu C,IEEE Trans Image Processing,1998年,7卷,3期,359页
  • 2Amini A A,IEEE Transactions Medical Imaging,1998年,17卷,3期,344页
  • 3Jolly M P D,IEEE Transactions on Pattern Analysis and Machine Intelligence,1996年,18卷,3期,293页
  • 4Jain A K,IEEE Transactions Pattern Analysisand Machine Intelligence,1996年,18卷,3期,267页
  • 5Lai K F,IEEE Transactions Pattern Analysis Machine Intelligence,1995年,17卷,11期,1084页
  • 6Cohen L D,CVGIP:Image Understanding,1991年,53卷,2期,211页
  • 7Cohen L D,Proceedings of the 3rd International Conference on Computer Vision,1990年,587页
  • 8周彦博,张志广.可变形物体的轮廓的提取[J].电子学报,1998,26(7):133-137. 被引量:7
  • 9贾春光,谭鸥,段会龙,吕维雪.基于变形轮廓的医学图象匹配方法[J].计算机辅助设计与图形学学报,1999,11(2):115-119. 被引量:16

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部