期刊文献+

基于改进的FCM和KPCA的多光谱图像特征提取方法 被引量:5

Feature Extraction for Multispectral Images Based on Improved FCM and KPCA
下载PDF
导出
摘要 分析了PCA和KPCA对于提取多光谱图像非线性特征的不足,提出了一种基于改进的FCM和KPCA的多光谱图像特征提取方法。首先利用改进的FCM进行聚类分析,然后将获得的聚类中心作为输入样本,进行KPCA,从而得到主成分图像。试验结果表明,文中提出的方法具有良好的特征提取性能,可有效地提取多光谱图像的非线性特征。 The drawbacks of the standard principal component analysis (PCA) and the kernel principal component analysis(KPCA) in extracting nonlinear feature of multispectral images are analysed. A new method of feature extraction using improved FCM and KPCA is proposed. After clustering analysis by the improved FCM, the obtained cluster centers as input samples is used and then the principal component images can be obtained based on KPCA. The experiments show that the proposed method has effective performance in nonlinear feature extraction of multispectral images.
作者 张克军 刘哲
出处 《科学技术与工程》 2007年第8期1657-1661,共5页 Science Technology and Engineering
基金 陕西省自然科学基金(2005F44)资助
关键词 多光谱图像 改进的FCM KPCA特征提取 multispectral images improved FCM KPCA feature extraction
  • 相关文献

参考文献8

  • 1[1]Carreira-Perpian M A A.Review of dimension reduction techniques:[Technical Report CS-96-09].Department of Computer Science,University of Sheffield,1997
  • 2[2]Chitroub S,Houacine A,Sansal B.Principal component analysis of multispectral images using neural network.In:IEEE International Conference on Computer Systems and Applications,ACS,25-29June,2001:89-95
  • 3[3]Scholkopf B,Smola A J,Klaus-Robert M.Kernel principal component analysis.Advances in Kerrel Methods,MIT Press,1998:327-352
  • 4[4]Jade A M,Srikanth B,Jayaraman V K,et al.Feature extraction and denoising using kernel PCA.Chemical Engineering Science,2003;(58):4441-4448
  • 5王和勇,姚正安,李磊.基于聚类的核主成分分析在特征提取中的应用[J].计算机科学,2005,32(4):64-66. 被引量:20
  • 6[6]Pal N R,Bezdek J C.On cluster validity for fuzzy-c-mean model.IEEE Transactions on Fuzzy Systems,1995 ;3:370-379
  • 7[7]Pal N R,Bezdek J C.Correction to on cluster validity for the fuzzyc-mean model.IEEE Transactions on Fuzzy Systems,1997 ;5:152-153
  • 8[9]Sun Zhanli,Huang Deshuang,Cheun Yiuming.Extracting nonlinear features for multispectral images by FCMC and KPCA.Digital Signal Processing,2005;(15):331-346

二级参考文献7

  • 1Carreira-Perpian M A. A Review of Dimension Reduction Techniques:[Technical Report CS-96-09]. Department of Computer Science, University of Sheffield, 1997
  • 2Maeda E,Murase H. Multi-category classification by kernel based nonlinear subspace method. In:Proc. of the IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 99), IEEE Press, 1999
  • 3Scholkopf B, Smola A J, Muller Klaus-Robert. Kernel Principal Component Analysis [M]. Advances in Kerrel Methods, MIT Press, 1998. 327~352
  • 4Vapnik V N. Statistical learning theory. AT&T Research, London University, 1998
  • 5Smola A J, Scholkopf B. Sparse greedy matrix approximation for machine learning. In: Proc. of ICML'00, Bochum, Germany,Morgan Kaufmann, 2000. 911 ~ 918
  • 6Williams C, Seeger M. Using the Nystrom method to speed up kernel machines. Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2001,13
  • 7Tipping M. Sparse kernel principal component analysis. In Advances in Neural Information Processing Systems 13, MIT Press,Cambridge, MA, 2001. 633~639

共引文献19

同被引文献72

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部