摘要
对于Hilbert空间H上的非自伴的对称闭算子A,在其扰动算子B是对称算子且关于A的相对界小于1/2的条件下,利用对称闭算子的亏指数和自伴算子的扰动定理,证明了扰动后的算子A+B的谱等于算子A的谱.
Let A be the non-self-adjoint closed symmetric operation on a Hilbert space, H and B be the perturbed operation of A. Assume that B is symmetrical and its relative boundary about A is smaller than 1/2. Using perturbation theorems of self-adjoint operations and the deficiency indies of closed symmetric operations, it is proved that the spectral sef σ ( A + B)of the operation A+B equals to the spectral set σ ( A)of the operation A.
出处
《西南民族大学学报(自然科学版)》
CAS
2007年第2期225-228,共4页
Journal of Southwest Minzu University(Natural Science Edition)
关键词
自伴算子
闭对称算子
扰动
亏指数
谱
self-adjoint operation
closed symmetric operation
perturbation
deficiency indice
spectrum