期刊文献+

基于NPCA的盲源分离算法 被引量:2

Blind Source Separation with Nonlinear PCA
下载PDF
导出
摘要 主要讨论了基于非线性主分量分析(NPCA)的盲源分离,从理论与实验2个方面详细分析了算法的特性与效果。针对算法中的非线性函数选择的问题,采用了在线统计的方法,即根据不同的输入信号选择不同的非线性函数。从实验结果可以看出,该方法不仅可以很好地解决源信号为亚高斯信号混合的盲源分离问题,而且对源信号为亚高斯和超高斯信号混合的盲源分离问题也取得了很好的效果。 This paper discusses Blind Source Separation (BSS) with Nonlinear PCA both theoretically and experimentally. The main problem of Nonlinear PCA is how to choose proper nonlinear function. A novel approach called on-line selection is proposed.That is, different nonlinear functions are selected according to different inputs. The experiments show the effectiveness of this approach not only with sub-sub Gaussian sources but also with sub-super Gaussian sources, which is more difficult to perform.
出处 《无线电通信技术》 2007年第2期29-30,60,共3页 Radio Communications Technology
关键词 盲源分离 主分量分析 非线性主分量分析 超高斯信号 Blind Source Separation (BSS) PCA Nonlinear PCA super Gaussian
  • 相关文献

参考文献5

  • 1OJA E.The nolinear PCA learning rule and signal separationmathematical analysis[J].Neural Computing,1997,17:25 -45.
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3KENJI NAKAYAMA,AKIHIRO HIRANO,TAKAYUKI SAKAI.An adaptive nonlinear function controlled by kurtosis for blind source separation[C]//IEEE&INNS,Proc.IJCNN'2002.Honolulu,Hawai:May 2002,1234-1239.
  • 4KARHUNEN J,PAJUNEN P,OJA E.The nonlinear PCA criterion in blind source separation:relations with other approaches[J].Neurocomputing,1998 (22):5-20.
  • 5HAYKIN S.Unsupervised Adaptive Filtering,vol I:Blind Source Separation[M].New York:Wiley,2000.

二级参考文献51

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献210

同被引文献17

  • 1何为伟,肖俊.基于峰度的ICA算法[J].现代电子技术,2005,28(11):46-47. 被引量:3
  • 2王峻峰,史铁林,刘世元,何岭松.基于主分量分析的信号白化解相关处理[J].中国机械工程,2005,16(21):1954-1956. 被引量:8
  • 3刘洋,吴新杰.独立成分分析方法的研究及应用[J].沈阳教育学院学报,2006,8(1):125-126. 被引量:4
  • 4马丽艳,邬诚,马艳荣,李少华.基于自适应核估计的ICA算法[J].工程地球物理学报,2007,4(2):90-94. 被引量:3
  • 5余先川,胡丹.盲源分离理论与应用[M].北京:科学出版社.2011:1.10.
  • 6ZAYYANI H,BABAIE-ZADEH M.Approximated Cramér-Rao Bound for Estimating the Mixing Matrix in the Two-sensor Noisy Sparse Component Analysis (SCA)[J].Digital Signal Processing,2013(23):771-779.
  • 7XU T,WANG W W.A Compressed Sensing Approach for Underdetermined Blind Audio Source Separation with Sparse Representation[C]// IEEE/SP 15th Workshop on Statistical Signal Processing.Cardiff,UK,2009:493-496.
  • 8BLUMENSATH T,DAVIES ME.Compressed Sensing and Source Separation[C]//The 7th Int-ernational Conference on Independent Compon-ent Analysis and Signal Separation.London:UK,2007:341-348.
  • 9AHARON M,ELAD M,Bruckstein A M,et al.K-SVD:an Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
  • 10ELAD M,AHARON M.Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部