摘要
六角系统或冠状六角系统通称为多六角图。对于给定的自然数k,若从多六角图GK中去掉俐意t(≤k)个互不相交的六角形及其关联的边后得到的G的子图是空图或有完配匹配,则称G为k-可覆盖。本文综述了关于k-可多六角图的研究的进展,并给出了若干未解决问题。
A polyhex is either a hexagonal system or a coronoid system. A polyhex is said to be k--coverable if for any t (≤k) mutually disjoint hexagons, the subgraph obtained trom the polyhex bY deleting all these t hexagons together with their incident edges has at least one perfect matching gr is an empty .graph, In this paper we survey recent developments about k--coverable p, olyhexes as well as some open problems.
出处
《漳州师院学报》
1996年第2期1-2,共2页
Journal of ZhangZhou Teachers College(Philosophy & Social Sciences)
关键词
六角系统
冠状系统
多六角图
完备匹配
k-可覆盖
hexagonal system, coronoid system,polyhex,perfect matching, k--coverable, construction