摘要
独立分量分析是盲源分离的主流技术。自然梯度算法是其中非常重要的算法之一。介绍一种最大似然框架下的Pear-son系统模型。该方法的优点是无须知晓信号的概率分布,实验结果表明,该算法能有效地分离随机混合的信号,特别对于非对称源有比同类算法更理想的效果。
Independent component analysis is a mainstream technique for blind source separation. Natural gradient algorithm is one of the most important algorithms. This paper introduces a method for blind source separation without any knowledge of their probability distributions. This is achieved under a maximum likelihood framework by Pearson system model. Simulation result shows that the proposed algorithm is able to separate random mixing signals, especially for asymmetric sources.
出处
《计算机应用与软件》
CSCD
北大核心
2007年第4期150-151,188,共3页
Computer Applications and Software
关键词
盲信源分离
自然梯度算法
Pearson系统模型
评价函数
Independent component analysis(ICA) Natural gradient algorithm Pearson system model Score functions