期刊文献+

基于Pearson系统模型的盲信号分离研究 被引量:1

RESEARCH ON BLIND SOURCE SEPARATION BASED ON PEARSON SYSTEM MODEL
下载PDF
导出
摘要 独立分量分析是盲源分离的主流技术。自然梯度算法是其中非常重要的算法之一。介绍一种最大似然框架下的Pear-son系统模型。该方法的优点是无须知晓信号的概率分布,实验结果表明,该算法能有效地分离随机混合的信号,特别对于非对称源有比同类算法更理想的效果。 Independent component analysis is a mainstream technique for blind source separation. Natural gradient algorithm is one of the most important algorithms. This paper introduces a method for blind source separation without any knowledge of their probability distributions. This is achieved under a maximum likelihood framework by Pearson system model. Simulation result shows that the proposed algorithm is able to separate random mixing signals, especially for asymmetric sources.
出处 《计算机应用与软件》 CSCD 北大核心 2007年第4期150-151,188,共3页 Computer Applications and Software
关键词 盲信源分离 自然梯度算法 Pearson系统模型 评价函数 Independent component analysis(ICA) Natural gradient algorithm Pearson system model Score functions
  • 相关文献

参考文献5

  • 1李木森,毛剑琴.盲信号分离的现状和展望[J].信息与电子工程,2003,1(1):69-79. 被引量:17
  • 2X.D.Zhang,X.L.Zhu and Z.Bao.,Grading learning for blind source separation.Science in china(Series f)[J],2003(46):31~44.
  • 3J.F.Cardoso and B.Laheld,Equivariant adaptive source separation.IEEE Trans.On Signal Processing[J],1996(44):3017~3030.
  • 4Karvanen and V.Koivunen,Blind Separation Methods Based on Pearson System and its Extensions.Signal Processsing[J],2002(82):663~673.
  • 5张明键,韦岗.一种信号源盲分离的神经网络算法[J].信号处理,2003,19(2):149-152. 被引量:5

二级参考文献42

  • 1[1]R Linsker. An application of the principle of maximum information preservation to linear systems[Z].Adv. Neural Inform. Process Systems, 1989,1.
  • 2[2]Jutten C,Herault J. Blind separation of sources,Part 1:An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24:1-10.
  • 3[3]Common P. Independent component analysis,a new concept? [J]. Signal Processing, 1994,36:287-314.
  • 4[4]A J Bell,T J Sejnowski. An information-maximisation approach to blind separation and blind deconvo--lution[J]. Neural Computation, 1995,7:1129 1159.
  • 5[5]S,Amari. Natural gradient works eHciently in learning[J]. Neural Computation, 1998,10 (2):251 276.
  • 6[6]J F Cardoso,B H Laheld. Equivariant adaptive source separation[J]. IEEE Trans. Signal Process, 1996,44 (12):3017 3030.
  • 7[7]A Souloumiac. Blind source detection and separation using secondorder nonstationarity[A]. In Proc.ICASSP[C]. 1995:1912-1915.
  • 8[8]M K Tsatsanis,C Kweon. Source separation using second order statistics:Identifiability conditions and algorithms[A]. In Proc.32nd Asilomar Conf. Signals,Syst.,Comput.[C]. 1998:1574-1578.
  • 9[9]K Matsuoka,M Ohya,M Kawamoto. A neural net for blind separation of nonstationary signals[J]. Neural Networks, 1995,8(3):411-419.
  • 10[10]J T Ngo,N A Bhadkamkar. Adaptive blind separation of audio sources by a physically compact device using second-order statistics[A]. In Proc. ICA'99[C]. Aussois,France,Jan.11-15,1999:257-260.

共引文献20

同被引文献5

  • 1孙守宇,郑君里,赵敏,张琪.不同幅度通信信号的盲源分离[J].通信学报,2004,25(6):132-138. 被引量:11
  • 2Amari S, Chen T, Cichocki A. Stability analysis of adaptive blind source separation[J]. Neural Newworks, 1997, 10(8): 1345-1351.
  • 3Ozerov A, et al, Adaptation of Bayesian models for single channel source separation and its application to voice/music separation in popular songs[J]. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(5): 1564-1578.
  • 4SAWADA Hiroshi, et al. Blind extraction of dominant target sources using ICA and time-frequency masking[J]. IEEE trans on Audio, Speech and Language Processing, 2006, 14(6): 2165-2173.
  • 5LEE T W, GIROLAMI M, SEJNOWSKI T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J]. Neural Computation, 1999, 11(3): 417-441.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部