摘要
弱双补代数是在有限分配情形下对概念代数抽象而成的一种代数.考察了弱双补代数的直积和同余,通过分别在直积和同余类上构造相应的二元运算和一元运算,证明其直积和同余类亦是弱双补代数,并证明了弱双补代数的同态定理.
In finite distributive lattices weakly dicomplemented lattices are abstract concept algebra. We investigate the direct product and congruence of weakly dicomplemented lattice, prove that they are dicomplemented lattices, and the homomorphism theorem of weakly dicomplemented lattice.
出处
《合肥学院学报(自然科学版)》
2007年第1期18-20,31,共4页
Journal of Hefei University :Natural Sciences
关键词
弱双补代数
概念代数
直积
同余
weakly dicomplemented lattice
concept algebra
direct product
congruence