期刊文献+

弱双补代数的直积和同余

Direct Product and Congruence of Weakly Dicomplemented Lattice
下载PDF
导出
摘要 弱双补代数是在有限分配情形下对概念代数抽象而成的一种代数.考察了弱双补代数的直积和同余,通过分别在直积和同余类上构造相应的二元运算和一元运算,证明其直积和同余类亦是弱双补代数,并证明了弱双补代数的同态定理. In finite distributive lattices weakly dicomplemented lattices are abstract concept algebra. We investigate the direct product and congruence of weakly dicomplemented lattice, prove that they are dicomplemented lattices, and the homomorphism theorem of weakly dicomplemented lattice.
机构地区 三峡大学理学院
出处 《合肥学院学报(自然科学版)》 2007年第1期18-20,31,共4页 Journal of Hefei University :Natural Sciences
关键词 弱双补代数 概念代数 直积 同余 weakly dicomplemented lattice concept algebra direct product congruence
  • 相关文献

参考文献4

  • 1[1]Ganter B,Wille R.Formal Concept Analysis:Mathematical Foundations[M].Heidelberg:Springer,1999:17-23,97-112.
  • 2[2]Wille R.Boolean Concept Logic[C]//Proceedings of the Linguistic on Conceptual Structures:Logical,Linguistic,and Computational Issues.London UK:Springer-Verlag,2000.317 -331.
  • 3[3]Kwuida L.When is a Concept Algebra Boolean?[C] //LNAI 2961.Berlin Springer,2004:142-155.
  • 4[4]Godin R,Missaoui R,Alaoui H.Incremental Concept Formation Algorithms Based on Galois (Concept)Lattices[J].Computational Intelligence,1995,11 (2):246-267.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部