摘要
研究了高阶非齐次线性微分方程f(k)+Ak-1f(k-1)+…+A1f′+A0f=F的增长性问题,其中A0,A1,…,Ak-1,F是整函数.当存在系数A0为缺项级数且比其他系数有较快增长性时,得到了上述非齐次微分方程解的超级、解取小函数点的超级与方程系数的级3者之间的关系.
In this paper, the growth of solutions of the differential equation f^(k)+Ak-1f^(k-1)+…+A1f^′+A0f=F is investigated, where A0,A1,…,Ak-1,F are entire functions. The relationship among the hyper order of growth of the solution of equation, the hyper order of growth of solution to small order of growth function and the order of growth of coefficient of equation are obtained, when the dominant coefficient A0 has Fabry gap.
出处
《宁夏大学学报(自然科学版)》
CAS
北大核心
2007年第1期19-21,共3页
Journal of Ningxia University(Natural Science Edition)
基金
江西省科技计划资助项目
关键词
NEVANLINNA值分布理论
微分方程
缺项级数
小函数
收敛指数
Nevanlinna value distribution theory
differential equation
Fabry gap
small order of growth function
convergence