摘要
假设f(x)二阶连续可微且一致凸时和f(x)的二阶导数矩阵G(x)在极小点x*处满足Hlder条件,文章证明了基于新拟牛顿方程的拟牛顿法的超线性收敛性.
If f(x) is twice continuously differentiable and uniformly convex,and we also assume that the Hessian matrix G be Holder continuous at x^* ,the superlinear convergence of the algorithm based on the new quasi-Newton is presented.
出处
《太原师范学院学报(自然科学版)》
2007年第1期21-23,共3页
Journal of Taiyuan Normal University:Natural Science Edition
关键词
新拟牛顿方程
拟牛顿方法
超线性收敛性
new quasi-Newton equation quasi-Newton methods superhnear convergence