摘要
讨论了n阶积分微分方程的解的渐近性态,其中Dn(t,x):=x(n)+a1(t)x(n-1)+…+an-1(t)x’+an(t)x,t∈[0,+∞).证明了在适当条件下此积分微分方程的解可由微分方程Dn(t,x)=0的基本解组X1(t),x2(t),…,xn(t)表示成如下形式:X(t)=C1(t)X1(t)+…+Cn(t)xn(t),这里ci(t)∈C(R+,R)是有界函数且当t→∞时,Ci(t)存在极限,i=1,2,…,n.
It is proved in the paper that, under suitable conditions on the functions f g and ai(t),every solution x(t) of the integrodifferential equation:can be expressed in the form x(t)=c1(t)x1(t) + … +cn(t)xn(t), where {x,(t), …, xn(t)} is any set of linearly independent solutions of the corresponding linear differential equation Dn(t, x)=0, and ci(t)(i= 1, 2, …, n) are suitable functions of the class C(R+, R) having finite limit as t →∞.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
1996年第1期10-16,共7页
Journal of Jinan University(Natural Science & Medicine Edition)
关键词
积分微分方程
渐近性态
线性无关
integrodifferential equation,asymptotic behavior,linear expression