摘要
本文研究具有固定T周期的奇异哈密尔顿系统x+V(X)=f(t)(HS)其中Ω是1RN中的开子集,V∈C1(Ω,R)且在边界有奇性,即,limV(x)=-∞,f∈C(R,RN)是T周期的.应用临界点理论,我们得到结果:当N≥2且V满足强力条件时,(HS)有无穷多个T周期解;当N=2且V不满足强力条件时,(HS)有无穷多个广义T周期解.
n this paper,we study the existence of the periodic solutions,with a fixed period T,of the singular Hamiltonian systemWhere Ω is an open subset of R, V∈C1 (Ω,R) With singularity at . i. e. lim V(x)=-∞,f∈C(R,RN) is T-periodic. By critical point theoty, the following results are obtained.When N >2 and V satisfies (SF)condition there are infinite many T-periodic solutions;when N = 2 and V doesn't satisfies (SF) condition,there are infinitely many generalized T-periodio solutions.
关键词
哈密尔顿系统
强力
奇异位势
临界点理论
hamiltonian system,strong forces,singular potential,critical point theorem