期刊文献+

A New Approach to Synchronization Analysis of Linearly Coupled Map Lattices 被引量:1

A New Approach to Synchronization Analysis of Linearly Coupled Map Lattices
原文传递
导出
摘要 In this paper, a new approach to analyze synchronization of linearly coupled map lattices (LCMLs) is presented. A reference vector x(t) is introduced as the projection of the trajectory of the coupled system on the synchronization manifold. The stability analysis of the synchronization manifold can be regarded as investigating the difference between the trajectory and the projection. By this method, some criteria are given for both local and global synchronization. These criteria indicate that the left and right eigenvectors corresponding to the eigenvalue "0" of the coupling matrix play key roles in the stability of synchronization manifold for the coupled system. Moreover, it is revealed that the stability of synchronization manifold for the coupled system is different from the stability for dynamical system in usual sense. That is, the solution of the coupled system does not converge to a certain knowable s(t) satisfying s(tT1) = f(s(t)) but to the reference vector on the synchronization manifold, which in fact is a certain weighted average of each x^i(t) for i=1,……, m, but not a solution s(t) satisfying s(t + 1)=f(s(t)).
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2007年第2期149-160,共12页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 60374018, No. 60574044) the Graduate Student Innovation Foundation of Fudan University.
  • 相关文献

参考文献22

  • 1Strogatz,S.H.and Stewart,I.,Coupled oscillators and biological synchronization,Sci.Am.,269(6),1993,102-109.
  • 2Gray,C.M.,Synchronous oscillations in neural systems,J.Comput.Neurosci.,1,1994,11-38.
  • 3Glass,L.,Synchronization and rhythmic processes in physiology,Nature,410,2001,277-284.
  • 4Millerioux,G.and Daafouz,J.,An observer-based appraoch for input-independent global chaos synchronization of discrete-time switched systems,IEEE Trans.Circuits Syst.-I,50(10),2003,1270-1279.
  • 5Vieira,M.de S.,Chaos and synchronization chaos in an earthquakes,Phys.Rev.Lett.,82(1),1999,201-204.
  • 6Lu,W.and Chen,T.,Synchronization of coupled connected neural networks with delays,IEEE Trans.Circuits Syst.-I,Regular Papers,2004,2491-2503.
  • 7Pecora,L.M.and Carroll,T.L.,Synchronization in chaotic systems,Phys.Rev.Lett.,64(8),1990,821-824.
  • 8Mirollo,R.E.and Strogatz,S.H.,Synchronization properties of pulse-coupled biological oscillators,SIAM,J.Appl.Math.,50,1990,1645-1662.
  • 9Heagy,J.F.,Carroll,T.L.and Pecora,I.M.,Synchronous chaos in coupled oscillator systems,Phys.Rev.E,50,1994,1874-1885.
  • 10Lakshmanan,M.and Murali,K.,Chaos in Nonlinear Oscillators:Controlling and Synchronization,World Scientific,Singapore,1996.

同被引文献39

  • 1BARAHONA M,PECORA L M.Synchronization in small-world systems[J].Physical Review Letters,2002,89(4):54-101.
  • 2ALBERT R,BARABASI A.Statistical mechanics of complex networks[J].Reviews of Modern Physics,2002,74(1):47-79.
  • 3WU C W.Synchronization in Complex Networks of Nonlinear Dynamical Systems[M].Singapore:World Scientific,2000.
  • 4XU S Y,YANG Y.Global asymptotical stability and generalized synchronization of phase synchronous dynamical net-works[J].Nonlinear Dynamics,2010,59(3):485-496.
  • 5CHEN M Y.Some simple synchronization criteria for complex dynamical networks complex dynamical networks[J].IEEE Transactions on Circuits and Systems,2006,53(12):1185-1189.
  • 6LU J Q,HO D W C.Globally exponential synchronization and synchronizability for general dynamical networks[J].IEEE Transactions on Circuits and Systems,2010,40(2):350-361.
  • 7LU J Q,KURTHS J,CAO J D,et al.Synchronization control for nonlinear dtochastic fynamical networks:pinning impulsive strategy[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(2):285-292.
  • 8LI K,GUAN S G,GONG X f,et al.Synchronization stability of general complex dynamical networks with time varying delay[J].Physics Letters A,2008,372(37):7133-7139.
  • 9LI C,CHEN G.Synchronization in general complex dynam-ical networks with coupling delays[J].Physics A,2004,343(15):263-278.
  • 10KWON O M,PARK JU H.New delay-dependent robust stability criterion for uncertain neural networks with time-varying delays[J].Applied Mathematics and Computation,2008,205(1):417-427.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部