期刊文献+

Quasi-convex Functions in Carnot Groups 被引量:3

Quasi-convex Functions in Carnot Groups
原文传递
导出
摘要 In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L^∞ estimates of first derivatives of h-quasiconvex functions are given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are locally bounded from above. Furthermore, the authors obtain that h-convex functions are locally Lipschitz continuous and that an h-convex function is twice differentiable almost everywhere.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2007年第2期235-242,共8页 数学年刊(B辑英文版)
基金 Project supported by the Science Foundation for Pure Research of Natural Sciences of the Education Department of Hunan Province (No. 2004c251) the Hunan Provincial Natural Science Foundation of China (No. 05JJ30006) the National Natural Science Foundation of China (No. 10471063).
关键词 h-Quasiconvex function Carnot group Lipschitz continuity Carnot群 h-拟凸函数 h-凸集 Lipschitz连续性
  • 相关文献

参考文献2

二级参考文献11

  • 1Danielli, N.. Garofalo. N., Nhieu, D. Notions of convexity in Carnot groups. Comm. Anal. Geom., 11:263-341 (2003).
  • 2Folland,G.B.,Steill. E.M. Hardy Space on Homogeneous groups. Princeton University Press, Princeton,NJ. 1982.
  • 3Gill,P.M.Pearce.C.E.M..Peearie,J.Hadamard's inequality for r-convex functions.J.Math.Anal.Appl.215:461-470(1997).
  • 4Lu.G.Z.Manfredi.J.J.Stroffolini.B.Convex functions on the Hersenberg group.Cale.Var.Partial Differential Equations.to qppear.
  • 5Pansu, P. Metriques de Carnot-Caratheodory et quasu-sometries des espacec symetriques de rang un. Ann.Math., 129:1-60 (1989).
  • 6Pearce, C.E.M., Pecarie, J. A continuous analogue and an extension of Rado's formulae for convex and concave functions. Bull. Austral. Math. Sot.. 53:229-233 (1996).
  • 7Pearce, C.E.M., Pecarie, J., Simie, V. Stolarsky means and Hadamard's inequality. J. Math. Anal. Appl.,220:99-109 (1998).
  • 8Stolarsky, K,B. Generalization of the logarithmic mean, Math. Mag., 48:87-92 (1975).
  • 9Uhrin, B. Some remarks about the convolution of unimodal functions. Ann. Probab., 12: 640- 645 (1984).
  • 10Yang, G.S., HWang, D.Y. Refinements of Hadamaard's inequality for r-convex functions. Indian J. Pure appl. Math., 32:1571-1579 (2001).

共引文献2

同被引文献3

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部