摘要
设(X,f)为一个动力系统.X的超空间是指由X的所有非空闭子集构成的集簇并赋予Vietories拓朴,它对于联系一维系统和高维流形具有很重要的作用.本文主要研究了f,f,f之间的一些极限行为,如:distal性质、proximal性质和扩张性质;同时证明了等度连续性(一致刚性)在f,f,f之间的等价性.
Let (X,f) be a dynamical system. The hyperspace of X is a specified collection of non-empty closed subsets of X with the Vietoris topology,which is very important for connecting one-dimension manifolds with high-dimension manifolds. In this paper,the relationship of some limit behaviors such as distality,proximity,expansivity among f, f,and f is studied. The equivalence of equicontinuity (uniform rigidity respectively) among f,f,and f is also proved.
出处
《广西大学学报(自然科学版)》
CAS
CSCD
2007年第1期55-59,共5页
Journal of Guangxi University(Natural Science Edition)
基金
Supported by NSFC(10361001)
Guangxi Science Foundation(007002)
Foundation of Guangxi University(X061022)