期刊文献+

分块态射的广义逆 被引量:1

The Moore-Penrose Inverse Inverse of A Partitioned Morphism in an Additive Category
下载PDF
导出
摘要 讨论了分块态射的Moore-Penrose逆,用不同与文[1]的方法给出了分块态射f=(u v)的Moore-Penrose逆表达式.这个表达式与Petr Pe ka(2000)给出的等价. In this paper, the notion of a partitioned morphism is studied, several formulas are derived and a new way is given to study the Moore-Penrose inverse of f= (u v), which equals to the way given by the paper of Peska P(2000).
出处 《曲阜师范大学学报(自然科学版)》 CAS 2007年第2期44-46,共3页 Journal of Qufu Normal University(Natural Science)
基金 广西科学基金资助项目(桂科基0575032 桂科青0640016) 广西教育厅科研项目(桂教科研[2005]47号) 广西高校百名中青年学科带头人资助计划 淮南师范学院青年教师科研基金(2006LKQ07) 广西民族大学重大科研项目基金
关键词 加范畴 MOORE-PENROSE逆 分块态射 additive category Moore-Penroseinverse partitioned morphism
  • 相关文献

参考文献5

  • 1Peska P.The Moore-Penrose inverse of a partitioned morphism in an additive category[J].Math Slovaca,2000,50:437-452.
  • 2Cline R E.Representations for the generalized inverse of sums of matrices[J].J Soc Indust Appl MathSer B Numer Anal,1965,2:99-114.
  • 3Mihalyffy L.An alternative representation of the generalized inverses of partitioned matrices[J].Linear Algebra Appl,1971,(4):95-100.
  • 4Puystjens R,Robinson D W.The moore-penrose inverse of a morphism in an additive category[J].Communications in Algebra,1984,12:437-452.
  • 5孙莉,陈传良,王品超.分块矩阵的理论应用[J].曲阜师范大学学报(自然科学版),2002,28(1):21-24. 被引量:6

共引文献5

同被引文献12

  • 1王兴国.(p,r)-不变凸性下广义分式规划的最优性条件[J].四川师范大学学报(自然科学版),2005,28(1):66-69. 被引量:12
  • 2王秀玉,姜兴武,李慧玲.对称双边对角矩阵的性质及广义逆[J].东北师大学报(自然科学版),2005,37(3):128-131. 被引量:3
  • 3Yu Y, Wei Y. Determinantal representation of the generalized inverse AT,S^(2) over integral domains and its applications[ J]. Linear and Multilinear Algebra,2009,57 (6) :547-559.
  • 4Liu X, Yu Y, Wang H. Determinantal representation of weighted generalized inverses [ J ]. Applied Mathematics and Computation,2009,208 (2):556-563.
  • 5Bhaskara Rao K P S. Generalized inverse of matrices over integral domains[ J]. Linear Algebra Appl, 1983,49( 1 ) :179-189.
  • 6Robinson D W. The classical adjoint[ J]. Linear Algebra Appl,2005,411 (1) :254-276.
  • 7Stanimirovic P, Stankovic M. Determinantal representation of weighted Moore-Penrose inverse [ J ]. Matematicki Vesnik, 1994, 46( 1 ) :41-50.
  • 8Cai J, Chen G L. On determinantal representation for the generalized inverse and its applications [ J ]. Numer Linear Algebra Appl,2007,14(2) :169-182.
  • 9Yu Y M, Wang G R. The generalized inverse AT,S^(2) over commutative rings [ J]. Linear and Multilinear Algebra,2005,53 (4) : 293 -302.
  • 10Bhaskara Rao K P S. The Theory of Generalized Inverse Over Commutative Rings[ M]. London/New York:Taylor Francis,2002.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部