摘要
证明熵S(x)和温度T(x)为∞^2n维辛流形T^*M上的一套正则坐标,热场系统由Hamiltonian H描述。对于热传导情形,H=-∫d^nxλ△↓S·△↓T.当热传导系数λ分别取λ1=T^2-1,λ2=sinT,λ3=1+cosT,λ4=1-cosT等温度的函数时,Hamiltonian运动方程给出温度孤子分别为T1=thζ,T2=cthζ,T3=2tg^-1e^ζ。
It is proved that entropy S(x) and temperature T(x) are a set of canonical ccordinates on the ∞2n-dimensional symplectic manifold T* M. For the case of thermal conduction,the Hamiltonian of the system is given as When the thermal conductivity λ takes the values, respectively, λ_1=T2-1, λ_2= sin T, λ_3= 1 + cosT, λ_4 = 1- cosT and so on,the Hamilton's equations possess the temperature soliton solutions T_1 = th, T_2 = cth T_3 =2tg ̄(-1), T_4 = 2ctg  ̄(-1) and others, where= ( x, y, z ) is a function. Similarly, the theory leads to some entropy solitons. The physical meanings of these solitons are simply discussed.
出处
《湖南教育学院学报》
1996年第2期34-37,共4页
Journal of Hunan Educational Institute
基金
湖南省自然科学基金
关键词
热场
辛流形
熵
温度
孤子
热传导
thermofield
symplectic manifold
entropy
temperature
soliton