摘要
在对完全二部图K3,3进行k-边着色中,记brk(Kt,t)为能够诱导出单色Kt,t的最小的正整数n,另外,记z(n;t)为Kn,n中不含子图Kt,t最大的边数。对t=2,3情形,分别证明了以下两个渐近公式:brk(Kt,t)□k^l(k→∞),z(n;t)□^2-1/t(k→∞)。
Let brk(Kt,t ) be the minimum integer such that in any edge coloring of Kn,n with K colors there is a monochromatic Kt,t ,and let Z(n, t) be the maximum number of edges in a subgraph Kn,n of that contains no Kt,t, It is shown that for t = 2 or 3, brk(Kt,t) □ k^l as k →∞ and z(n; t) D n^2-1/t as n →∞ , respectively.
作者
赵友军
孙玉芹
ZHAO You-jun ,SUN Yu-qin ( 1. Department of Mathematics, Tongji University, Shanghai 200092, China; 2. Department of Mathematics, Xinxiang University, Xinxiang 453003, China)
出处
《新乡师范高等专科学校学报》
2007年第2期1-3,共3页
Journal of Xinxiang Teachers College