期刊文献+

压电材料中两个非对称平行裂纹的基本解 被引量:7

Basic Solution of Two Parallel Non-Symmetric Permeable Cracks in Piezoelectric Materials
下载PDF
导出
摘要 采用Schmidt方法分析压电材料中非对称平行的双可导通裂纹的断裂性能.利用Fourier变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程.为了求解对偶积分方程,直接把裂纹面位移差函数展开成Jacobi多项式形式.最终得到了裂纹的应力强度因子与电位移强度因子之间的关系.数值结果表明,应力强度因子和电位移强度因子与裂纹间的距离、裂纹的几何尺寸有关;与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子.同时可以发现裂纹间的“屏蔽”效应也在压电材料中出现. The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading is studied by the Schmidt method for the perrmeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations in which the unknown variables are the jumps of displacements across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.
作者 周振功 王彪
出处 《应用数学和力学》 EI CSCD 北大核心 2007年第4期379-390,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10572043 10572155) 黑龙江省杰出青年基金资助项目(JC04-08)
关键词 压电材料 平行非对称裂纹 对偶积分方程 强度因子 piezoelectric materials parallel non-symmetric cracks the dual-integral equations intensity factor
  • 相关文献

参考文献21

  • 1Beom H G,Atluri S N.Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media[J].International Journal of Fracture,1996,75 (2):163-183.
  • 2Gao H J,Zhang T Y,Tong P.Local and global energy rates for an elastically yielded crack in piezoelectric ceramics[J].Journal of Mechanics and Physics of Solids,1997,45(2):491-510.
  • 3Han X L,WANG Tzu-chiang.Interacting multiple cracks in piezoelectric materials[J].International Journal of Solids and Structures,1999,36(27):4183-4202.
  • 4Yu S W,Chen Z T.Transient response of a cracked infinite piezoelectric strip under anti-plane impact[J].Fatigue of Engineering Materials and Structures,1998,21(3):1381-1388.
  • 5Zhang T Y,Hack J E.Mode-Ⅲ cracks in piezoelectric materials[J].Journal of Applied Physics,1992,71(4):5865-5870.
  • 6Sih G C,Zuo J Z.Energy density formulation and interpretation of cracking behavior for piezoelectric ceramics[J].Theoretical and Applied Fracture Mechanics,2000,34 (2):123-141.
  • 7Deeg W E F.The analysis of dislocation,crack and inclusion problems in piezoelectric solids[D].Ph D thesis.California:Stanford University,1980.
  • 8Pak YE.Crack extension force in a piezoelectric material[J].Journal of Applied Mechanics,1990,57(3):647-653.
  • 9Han J J,Chen Y H.Multiple parallel cracks interaction problem in piezoelectric ceramics[J].International Journal of Solids and Structures,1999,36(6):3375-3390.
  • 10Parton V S.Fracture mechanics of piezoelectric materials[J].Acta Astronautra,1976,3(4):671-683.

二级参考文献30

  • 1Wu T L, Huang J H. Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases [ J ]. International Journal of Solids and Structures ,2000,37(21) :2981-3009.
  • 2Sih G C, Song Z F, Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite[J]. Theoretical and Applied Fracture Mechanics,2003,39(3):209-227.
  • 3Wang B L, Mai Y W. Crack tip field in piezoelectric/piezomagnetic media[ J ]. European Journal of Mechanics A/ Solid,2003,22( 4 ) :591-602.
  • 4Gao C F,Tong P, Zhang T Y. Interfacial crack problems in magneto-electroelastic solids[J]. International Journal of Engineering Science ,2003,41(18):2105-2121.
  • 5Liu J X, Liu X L,Zhao Y B. Green's functions for anisotropic magnetolectroelastic solids with an elliptical cavity or a crack[J]. International Journal of Engineering Science, 2001,39(12):1405-1418.
  • 6Gao C F, Kessler H, Balke H. Crack problems in magnetoelectroelastic solids, Part Ⅰ : exact solution of a crack[J]. International Journal of Engineering Science,2003,41(9):969-981.
  • 7Wang B L,Mai Y W.Fracture of piezoelectromagnetic materials[J] .Mechanics Research Communications,2004,31(1):65-73.
  • 8Van Suchtelen J. Product properties: a new application of composite materials[J]. Phillips Research Reports, 1972,27(1):28-37.
  • 9Morse P M, Feshbach H. Methods of Theoretical Physics[M]. New York:McGraw-Hill, 1958,926-940.
  • 10Soh A K, Fang D N, Lee K L. Analysis of a bi-piezoelectric ceramic layer with an interracial crack subjected to anti-plane shear and in-plane electric loading[J]. European Journal of Mechanics. A/Solid, 2000,19(10) : 961-977.

共引文献15

同被引文献94

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部