期刊文献+

基于主元分析的子空间辨识算法 被引量:3

A New Subspace Identification Algorithm Using Principle Component Analysis
下载PDF
导出
摘要 子空间辨识算法作为一种优良的多变量系统辨识算法,最近在国内发展很快。但是现在国内介绍的大多数子空间辨识算法在变量有误差(errors-in-variable)时和闭环辨识时辨识结果却是有偏的,这是因为大多数子空间辨识算法都假设输入变量是没有噪声及辨识算法中存在的一个投影过程。文中介绍了一种新的子空间辨识算法,这种算法利用主元分析(PCA)来获取系统矩阵,避免了其他算法中的投影过程,因此该算法在闭环辨识和变量有误差(errors-in-variable)的情况下,辨识结果也是无偏的。最后给出一个仿真例子说明这种辨识算法的辨识效果良好。 The subspace identification algorithm as a kind of muhivariable identification algorithm has developed quickly at home recently. But most of these algorithms at home have errors in the errors - in - variable situation and close - loop situation. The reason is that most of subspace algorithms assume the input variable to be noise free and there is a projection in the algorithm. This text introduces a new identification algorithm that uses principle component analysis (PCA) to identify the system matrices. That avoids the projection in other algorithms so it can be applied to close - loop and errors - in - variable situation. At last a simulation example is given to demonstrate the effect of this
出处 《计算机仿真》 CSCD 2007年第3期101-103,共3页 Computer Simulation
关键词 子空间辨识 主元分析 闭环辨识 identification algorithm. Subspace identification Principle component analysis Close - loop identification
  • 相关文献

参考文献5

  • 1Peter Van Overschee.Bart DE MOOR,Subspace.Identification for linear system Theory-Implementation-Application[ M ].Kluwer Academic Publishers.1996.
  • 2Jin Wang,S Joe Qin.A new subspace identification approach based on principle component analysis[ J ].Journal of Process Control 12,2002.841 -855.
  • 3L Ljung and T McKelvey.Subspace identification from closed loop data[ J ].SignalProcessing,1996,52:209-215.
  • 4M Jansson,B Wahlberg.On consistency of subspace methods for system identification[ J ].Automatica,1998,34 (12):1507-1519.
  • 5M Verhaegen.Identification of the deterministic part of MIMO state space models given in innovations form fiom input-output data[ J].Automatica,30:61-74,1994.

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部