期刊文献+

基于再生核W空间的图像插值算法 被引量:3

Image Interpolation Algorithm Based on Reproducing Kernel
下载PDF
导出
摘要 提出了一种基于再生核的图像插值方法。再生核源于不同学科分支,已成为函数逼近的重要工具。该方法将再生核的再生公式离散,并按照证明的再生核数值积分方法导出了新型的图像插值算法。新插值算法的优点是利用再生核的数学模型特点保持图像的边界信息和光滑性,促进了插值的整体性能。实验结果表明:该算法能够克服其它算法的缺点,获取的高分辨率图像既能够保持图像的边界信息,又能保证图像的光滑性。 In this paper a novel image interpolation algorithm based on the reproducing kernel space W is proposed. Reproducing kernel developed in different disciplines has become an important tool for function approximation. The new method discretizes reproducing kernel and obtains interpolation formula with the proof of discrete integral. The advantages of the new interpolation method are the ability to keep the image edges and smoothness by model prop- erties of the reproducing kernel. Through comparisons with other algorithms it is shown that the new interpolation pro- duce higher quality, but visually it is very efficient at reducing jagged edges.
出处 《计算机仿真》 CSCD 2007年第3期219-222,245,共5页 Computer Simulation
基金 国家自然科学基金资助项目(60375007) 北京市自然科学基金资助(40410031) 北京市自然科学基金项目 北京市教育委员会科技发展计划重点项目(KZ200310005002) 多媒体与智能软件技术北京市重点实验室资助(KB10200584)
关键词 图像处理 图像插值 逼近方法 再生核 Image processing Image interpolation Approximation method Reproducing kernel
  • 相关文献

参考文献7

  • 1G Ramponi.Warped distance for space-variant linear image interpolation[J].IEEE Trans.Image Processing,1999,8:629-639.
  • 2K Jensen and D Anastassio.Subpixel edge localization and the interpolation of still images[ J].IEEE Trans.Image Processing,1995,4:285 -295.
  • 3J Allebach and P W Wong.Edge-directed interpolation[ C ].in IEEE Proc.ICIP,1996:707-710.
  • 4W K Carey,D B Chuang,and S S Hemami.Regularity -preserving image interpolation[ J ].IEEE Trans.Image Processing,1999,8:1293-1297.
  • 5X.Li.Edge Directed Statistical Inference With Applications to Image Processing[ D ].Ph.D.dissertation,Princeton University,Princeton,NJ,2000.
  • 6施云惠,阮秋琦.基于再生核神经网络的断层面模型重构[J].中国图象图形学报,2005,10(6):721-724. 被引量:3
  • 7Jayanta Mukheijee,Michael S Moore,Sanjit K Mitra.Color Demosaicing with Constrained Buffering[ C ].International Symposium on Signal Processing and its Applications (ISSPA),2001.52 -55.

二级参考文献5

  • 1文松龙,崔明根.W空间中最佳逼近插值算子[J].计算数学,1997,19(2):177-184. 被引量:15
  • 2增文冲.油气藏储集层测井评价技术[M].北京:石油工业出版社,1991.20-40.
  • 3Shin Suzuki. Constructive function-approximation by three artificial neural[J]. Neural Networks, 1998, 11: 1049~1058.
  • 4Ning Qian. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999,12: 145~151.
  • 5Gomm J B, Yu D L. Selecting radial basis function network centers with recursive orthogonal least squares training [J]. IEEE Transactions on Neural Networks, 2000, 11(2): 306~313.

共引文献2

同被引文献21

  • 1车生兵,黄达.基于ERBF核函数和边界填充的图像插值算法[J].计算机工程,2007,33(2):160-162. 被引量:2
  • 2Bertalmío M.Strong-continuation,Contrast-invariant Inpaintingwith a Third-order Optimal PDE[J].IEEE Transcations on ImageProcessing,2006,15(7):1934-1938.
  • 3Aly H A,Dubois E.Image Up-sampling Using Total-variationRegularization with a New Observation Model[J].IEEE Trans-cations on Image Processing,2005,14(10):1647-1659.
  • 4Jiang Hao,Moloney C.A New Direction Adaptive Scheme forImage Interpolation[C]//Proc.of ICIP’02.New York,USA:IEEEPress,2002:369-372.
  • 5Hwang J W,Lee H S.Adaptive Image Interpolation Based onLocal Gradient Features[J].IEEE Signal Processing Letters,2004,11(3):359-362.
  • 6Li Xin,Orchard M T.New Edge Directed Interpolation[J].IEEETransactions on Image Processing,2000,10(10):311-314.
  • 7Htwe A N.Image Interpolation Framework Using Non-adaptiveApproach and NL Means[J].International Journal of Network andMobile Technologies,2010,1(1):28-32.
  • 8吴锡生,党向盈,赵勇.基于阈值控制的边缘自适应快速图像插值算法[J].计算机工程,2007,33(22):226-228. 被引量:12
  • 9Hao Jiang,Moloney C.A New Direction Adaptive Scheme for Image Interpolation[C]//Proceedings of International Conference on Image Processing.New York,USA:IEEE Press,2002:369-372.
  • 10Li Xin,Orchard M T.New Edge Directed Interpolation[J].IEEE Transactions on Image Processing,2000,10(10):311-314.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部