期刊文献+

一种基于变形模板的椭圆跟踪算法 被引量:1

Ellipse Tracking Algorithms Based on Deformable Templates
下载PDF
导出
摘要 给出一种新的基于活动轮廓与光流约束的椭圆跟踪算法。椭圆变形模板在引入对目标模型严格的全局约束的同时,降低了计算复杂度;基于模型的光流技术被用于提取目标的运动信息并引导轮廓的变形;借助扩展Kalman(EKF)滤波器有机组合目标的形状与运动信息;最后利用光流测量方程给出的误差测度及EKF给出的估计方差对虚假样本点作出判断与舍弃,从而保证对图像噪声、遮挡及伪边缘具有较强的克服能力。算法除可用于跟踪刚体运动之外,也可用于非刚体(例如人头)运动的跟踪。计算实例表明了算法的有效性。 A new ellipse-tracking algorithm based on the active contour and the optical flow technique was proposed. The ellipse-special deformable template brings in a strict global constraint on the contour and decreases the computational burden at the same time. A model-based optical flow is used to extract the motion features of object and to guide the deformation of contour. By using of the Extended Kalman Filter, the measurements of shape and motion are naturally integrated. Besides, an optical-flow based measurement error and the estimated covariance given by the EKF filter are used to detect and reject the contour sample points that correspond to noise, occlusions or spurious edge. The resulting algorithm can be used to tracking the motion of both rigid and nonrigid objects (such as human head). Experiments with all this two application are presented to validate the algorithms.
作者 邹益民 汪渤
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第7期1565-1568,共4页 Journal of System Simulation
关键词 视觉跟踪 动态轮廓线 变形模板 光流 EKF滤波 visual tracking active contour deformable model optical flow EKF filter
  • 相关文献

参考文献15

  • 1Shin Y C,Ahmad S.3D location of circular and spherical features by monocular model-based vision[C]// Proceedings of IEEE International Conference on Systems,Man,and Cybernetics.Cambridge,MA,USA:IEEE Computer Society Press.1989.
  • 2Poggio T,Torre V.Ill-posed Problems and Regularization Analysis in Early Vision[C]// Proceedings of ARPA Image Understanding Workshop.Cambridge,MA,USA:Massachusetts Institute of Technology.1984.
  • 3Yuille A L,Hallinan P W,Cohen D S.Feature extraction from faces using deformable templates[J].International Journal of Computer Vision (S0920-5691),1992,8(2):99-111.
  • 4Horn B K P,Schunck B G.Determining optic flow[J].Artificial Intelligence (S0004-3702),1981,17(8):185-204.
  • 5Yuille A L,Hallinan P W.Active Vision[M].USA:Cambridge,MA,MIT Press,1992.
  • 6Terzopoulos D,Szeliski R.Tracking with Kalman Snakes in active vision[M].USA:Cambridge,MA,MIT Press,1992.
  • 7Bascle B,Deriche R.Energy-Based Methods for 2D Curve Tracking,Reconstruction and Refinement of 3D Curves and Applications[C]// Proceedings of SPIE:Geometric Methods in Computer Vision Ⅱ.San-Diego,CA,USA.1993.
  • 8Bascle B,Bouthemy P,Deriche R,et al.Tracking complex primitives in an image sequence[C]// Proceedings of 12th IAPR.Jerusalem,Israel.1994.
  • 9Peterfreund N.The velocity snake:Deformable contour for tracking in spatial-velocity space[J].Computer Vision and Image Understanding (S1077-3142),1999,73(3):346-356.
  • 10Zaritsky R,Peterfreund N,Shimkin N.Velocity-Guided Tracking of Deformable Contours in Three Dimensional Space[J].International Journal of Computer Vision (S0920-5691),2003,51(3):219-238.

二级参考文献30

  • 1van Merwe Rudolph,Doucet Arnaud.The unscented particle filter.Department of Engineering,Cambridge University:Technical Report CUED/F-INFENG/TR 380,2000.
  • 2Arulampalam Sanjeev,Maskell Simon,Gordon Neil,Clapp Tim.A tutorial on particle fitlers for on-line non-linear/non-Gaussian Bayesian tracking.IEEE Transactions on Signal Processing.2002,50(2):174-188.
  • 3Orton Matthew,Fitzgerald Willian.A bayesian approach totracking multiple targets using sensor arrays and particle fitlers.Department of Engineering.Cambridge University:echnical Report CUED/F-INFENG/TR 401.2001.
  • 4Yong Rui.Chen Yun-Qiang.Better proposal distributions:Object tracking using unscented particle filter.In:Proceedings of the IEEE CVPR,Hawaii,2001,2:786-793.
  • 5Merwe R.,Doucet A.,Freitas N.'Wan E..The unscented particle filter.Department of Engineering,Cambridge University:echnical Report CUED/F-INFENG/TR 380,2000.
  • 6Tanizaki H..Nonlinear and non-gaussian state-space modeling with Monte-Carlo simulations.Journal of Econometrics.1998.83(1-2):263-290.
  • 7Liu J.S.,Chen R..Sequential Monte Carlo methods for dy-namical systems.Journal of the American Statistical Associa-tion,1988,93:1032-1044.
  • 8Doucet A.,Gordon N.J..Simulation-based optical filter for manoeuvring target tracking.In;SPIE Signal and Data Pro-cessing of Small Targets,SPIE 3809,1999.
  • 9Leung Chung-Chu,Chen Wu-Fan.Brain tumor boundary detection in MR image with generalized fuzzy operator.In:Proceedings of IEEE ICIP Conference,Barcelona,Spain,2003,14-17.
  • 10Wu Ying.Yu Ting,Hua Gang.Tracking appearances with occlusions.In:Proceedings of IEEE Conference on CVPR'03.Madison,Wisconsin,2003,789-795.

共引文献9

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部