期刊文献+

基于混合智能的锅炉飞灰含碳量实时目标值模型

Real-time Optimal Value of Unburned Carbon in Fly Ash Based on Hybrid Intelligence Technique
下载PDF
导出
摘要 为了降低飞灰含碳量,提高锅炉运行水平,运用混合智能技术建立了飞灰含碳量目标值模型。从运行优化角度提出了飞灰含碳量目标值的定义和技术可行方案。通过对锅炉的历史运行工况数据库进行数据挖掘,建立了锅炉历史最优工况数据库,以此作为训练样本建立飞灰含碳量目标值的神经网络模型,在进行了实例验证后对模型进行了分析讨论。实际应用表明该模型具备自调节能力,能够向运行人员实时提供当前工况下的飞灰含碳量目标值,为飞灰含碳量的实时优化指明了调整的方向。 To improve boiler operation level, a new conceptualization of optimal value of unburned carbon content in the fly ash was expatiated. A viable technical solution of optimal value of unburned carbon content in the fly ash was developed by hybrid intelligence technique. Boiler historical optimal operation database were established by data mining based on boiler original operation database. An artificial neural network model for optimal value of unburned carbon content in the fly ash was set up and verified. An example was presented to demonstrate the effectiveness of the model. The application result shows that the model could provide real-time optimal value of unburned carbon content in the fly ash for operational staff with better predicting performance, higher calculation speed, outstanding self-tuning ability and generalization ability comparing with other modeling methods.
出处 《锅炉技术》 北大核心 2007年第2期15-19,共5页 Boiler Technology
关键词 飞灰含碳量 混合智能 电站锅炉 运行优化 数据挖掘 神经网络 unburned carbon content in the fly ash hybrid intelligence boiler of power plant operation optimization data mining neural network
  • 相关文献

参考文献8

二级参考文献40

  • 1刘文鹏,王乃文.飞灰含碳量在线监测技术在电站锅炉上应用的探讨[J].电站系统工程,1994,10(1):52-54. 被引量:10
  • 2李小江.燃料试验方法“飞灰和炉渣可燃物的测定”中存在的问题及建议[J].热力发电,1995,24(3):41-43. 被引量:4
  • 3刘福国.锅炉性能预测与优化试验报告[R].山东电力研究院,2003..
  • 4T G Evans ect. Microwave technique for on-line determination of unburnt carbon in fly ash CSIRO Division of Mineral and Engineering[M]. 1992.
  • 5Henry A. Foner and Thomas L. Robl. Coal use and fly ash disposal in israel [J]. UK Center for Applied Energy Research, 1997,8(5).
  • 6XIAO L S, CHEN J F, ZHENG H C, Effect of bluff-body burner and coal particle size on NOx emission and burnout [ J ]. Journal of the Institute of Energy, 1997, 2:112- 119.
  • 7BITTNER J, GASIOROWSKI S, TOUDU E, et al. STI fly ash separation system: operation history at New England Power's Brayton Point Power Plant[A]. 12th International Symposium on Coal Combustion by Production Management and Use[C]. Palo Alto, California: Electric Power Research Institute, 1997. 62 - 65.
  • 8SPEIGHT J G. Chemistry and technology of coal [ M ]. New York:Decker Inc, 1993.
  • 9YIN C, LUO Z, ZHOU J. A neural num-linar programming-based coal blending technology for power plant [J]. Chemical Engineering Research and Design, 2000, 78( 1 ) : 118 - 124.
  • 10REINSCHMIDT K F. Neural Networks: next step for simulation and control [J]. Power Engineering, 1991, 11:41-45.

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部