期刊文献+

一种预测流动和传热问题的快速算法 被引量:6

Fast Algorithm for Prediction of Fluid Flow and Heat Transfer
下载PDF
导出
摘要 将湍流拟序结构分析中的最佳正交分解技术运用到流动和传热问题中,并在最佳正交分解技术的基础上提出了一种快速预测流动和传热问题的算法.通过对样本矩阵实施最佳正交分解得到一组特征函数.这些特征函数具有能量最优的特性,即以这些特征函数为基函数,可以用非常少的基函数将原物理问题准确地表示出来.特征系数用样条曲线插值的方式计算得到.以同心圆环内的自然对流为例验证此算法,参数Ro/Ri为2.6,Pr为0.71,5 000≤Ra≤1×105.利用该算法可以准确地预测温度场和速度场,与准确解之间的相对误差仅为0.7%,并且比SIMPLE算法快100倍.该算法有较广的使用范围,不受几何结构和流态的限制,只要有一组准确的样本便可使用. A fast and efficient algorithm based on the proper orthogonal decomposition (POD) technique for predicting heat transfer and fluid flow was proposed. The POD technique was applied to a set of numerical simulation results to obtain the eigenfunctions that represent the dynamics of the physical problerm.The function space considered in the physical problem was limited to the smallest linear subspace when employing these eigenfunctions as basis functions. In stead of projecting the governing equations onto these eigenfunctions, the spectral coefficients were obtained with a simple cubic spline interpolation procedure. The presented algorithm was verified with an example of natural convection in a two dimensional concentric cylinder with a radius ratio of 2.6, and the Rayleigh number varying from 5 000 to 1×10^5. The results show that this algorithm can predict the flow and temperature fields with a relative error of 0.7 % compared with the exact numerical results, moreover, it is more than 100 times faster than the SIMPLE algorithm.
作者 丁鹏 陶文铨
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第3期271-273,共3页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50476046)
关键词 最佳正交分解 快速算法 流动 传热 proper orthogonal decomposition fast algorithm fluid flow heat transfer
  • 相关文献

参考文献4

  • 1Berkooz G,Holmes P,Lumley J L.The proper orthogonal decomposition in the analysis of turbulent flows[J].Annual Review Fluid Mech,1993,25:539-575.
  • 2Holmes P,Lumley J L,Berkooz G.Turbulence,coherent structures,dynamical systems and symmetry[M].Cambridge,UK:Cambridge Univ.Press,1996.
  • 3Sirovich L.Turbulence and the dynamics of coherent structure:part Ⅰ[J].Q Appl Math,1987(3):561-571.
  • 4Pantankar S V.Numerical fluid flow and heat transfer[M].New York:Academic Press,1981.

同被引文献46

  • 1张国忠.埋地热油管道停输降温过程的研究[J].油气储运,2004,23(12):33-37. 被引量:31
  • 2张劲军,朱英如,李鸿英,柳小敏,江敏.含蜡原油特征温度实验研究[J].石油学报,2007,28(4):112-114. 被引量:24
  • 3ALIFANOV O M. Inverse heat transfer problems [M]. Berlin,Germany: Springer-Verlag, 1994.
  • 4PANTANKAR S V. Numerical fluid flow and heat transfer [M]. New York, USA: Academic Press, 1981.
  • 5BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows [J]. Annual Review Fluid Mech, 1993, 25. 539-575.
  • 6HOLMES P, LUMLEY J L, BERKOOZ G. Turbulence, coherent structures, dynamical systems and symmetry [M]. Cambridge, UK: Cambridge Univ. Press, 1996.
  • 7SIROVICH L. Turbulence and the dynamics of coherent structure[J]. Q Appl Math, 1987(3):561-571.
  • 8DING Peng,WU Xuehong, HE Yaling, et al. A fast and efficient method for predicting fluid flow and heat transfer problems[J]. ASME Journal of Heat Transfer, 2008,130(3) :032502. 1-17.
  • 9Zienkiewicz O C, Taylor R L. The finite element method (sixth edition) volume3: fluid dynamics[M]. Barcelona: Butterworth-Heinemann, 2000: 1-27.
  • 10Patankar S V. Numerical heat transfer and fluid flow[M]. New York: Mc-Graw-Hill, 1980:163-183.

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部