期刊文献+

基于减法聚类的模糊神经网络转炉终点温度预报模型 被引量:1

BOF end-point temperature prediction model of fuzzy neural network system with subtractive clustering
下载PDF
导出
摘要 分析了对转炉终点温度的影响因素,利用减法聚类自动确定模糊规则的数目,建立了模糊神经网络系统预报转炉终点温度.结果表明,该方法建立的模型能够对终点温度进行较好的预报,误差在±4℃以内的命中率可达25.49%;预报误差小于±20℃的炉数可达84.31%. The primary influence factors for end-point temperature of BOF were analyzed. Subtractive clustering algorithm was adopted to determine the number of fuzzy rules, and then a prediction model based on fuzzy neural network for the end-point temperature (EPT) of BOF was established. The results showed that this model could predict EPT efficiently, with the hit rate of 25.49% in error range of ± 4℃, and 84.31% in±20℃.
出处 《材料与冶金学报》 CAS 2006年第4期247-249,共3页 Journal of Materials and Metallurgy
关键词 转炉 减法聚类 模糊神经网络 终点预报 温度 BOF subtracfive clustering fuzzy neural network end - point prediction temperature
  • 相关文献

参考文献6

  • 1Rumelhart D E,Hinton G E,Williams R J.Learning internal represent at ions by error propagation[M]//James L M.Explorations in the microstrncture of cognition.Cambridge:MIT Press,1986:318-362.
  • 2Fukamis,Mizumotom,Tanakak.Some considerations on fuzzy conditional inference[J].Fuzzy Sets and Systems,1980,4:243-273.
  • 3Zadeh L A.Fuzzy Sets[J].Information and Control,1965,8:338-353.
  • 4何清.模糊聚类分析理论与应用研究进展[J].模糊系统与数学,1998,12(2):89-94. 被引量:113
  • 5Christian Windischberger,Markus Barth,Claus Lamm.Fuzzy cluster analysis of high-field functional MRI data[J].Artificial Intelligence in Medicine,2003,29:203 -223.
  • 6Takagi T,Sugeno M.Fuzzy identification of systems and its application to modeling and control[J].IEEE transaction on Systems,Man,and Cybernetics,1985,15:116-132.

共引文献112

同被引文献10

  • 1徐启华,胡建华,富巍.基于模糊神经网络的道路交叉口交通控制方法[J].计算机工程,2004,30(14):146-148. 被引量:6
  • 2陈明和,高霖,朱知寿,左敦稳,王珉.基于模糊神经网络的升温超塑性成形工艺参数优化[J].南京航空航天大学学报,2005,37(4):461-465. 被引量:5
  • 3赵万生.电火花加工技术[M].哈尔滨:哈尔滨工业大学出版社,1999..
  • 4Kanga Y, et al. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools[J]. International Journal of Machine Tools & Manufacture, 2007,47:376 - 387
  • 5Lee C H, Lin Y C. An adaptive neuro-fuzzy filter design via periodic fuzzy neural network[J]. Signal Processing, 2005,85:401 -411
  • 6Oh S K, et al. Rule-based multi-FNN identification with the aid of evolutionary fuzzy granulation[J]. Knowledge.Based Systems, 2004,17:1 - 13
  • 7Wang L P, Frayman Y. A dynamically generated fuzzy neural network and its application to torsional vibration contral of tandem cold rolling mill spindles[J]. Engineering Applications of Artificial Intelligence, 2002,15:541-550
  • 8Chungchoo C, Saini D. On-line tool wear estimation in CNC turning operations using fuzzy neural network model[ J]. International Journal of Machine Tools & Manufacture, 2002, 42:29-40
  • 9孙佰清,潘启树,冯英浚,张长胜.提高BP网络训练速度的研究[J].哈尔滨工业大学学报,2001,33(4):439-441. 被引量:21
  • 10黄菊花,李慎国,饶进军,张洪明,黎雪芬.冲压件成形计算机模拟工艺参数优化方法研究[J].中国机械工程,2004,15(7):648-651. 被引量:23

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部