期刊文献+

BOUNDEDNESS AND CONVERGENCE FOR THE NON-LINARD TYPE DIFFERENTIAL EQUATION 被引量:1

BOUNDEDNESS AND CONVERGENCE FOR THE NON-LINARD TYPE DIFFERENTIAL EQUATION
下载PDF
导出
摘要 In this article, the author studies the boundedness and convergence for the non-Liénard type differential equation {^·x=a(y)-f(x),^·y=b(y)β(x)-g(x)+e(t),where a(y), b(y), f(x), g(x),β(x) are real continuous functions in y ∈ R or x ∈ R, β(x) ≥ 0 for all x and e(t) is a real continuous function on R^+ = {t : t ≥ 0} such that the equation has a unique solution for the initial value problem. The necessary and sufficient conditions are obtained and some of the results in the literatures are improved and extended. In this article, the author studies the boundedness and convergence for the non-Liénard type differential equation {^·x=a(y)-f(x),^·y=b(y)β(x)-g(x)+e(t),where a(y), b(y), f(x), g(x),β(x) are real continuous functions in y ∈ R or x ∈ R, β(x) ≥ 0 for all x and e(t) is a real continuous function on R^+ = {t : t ≥ 0} such that the equation has a unique solution for the initial value problem. The necessary and sufficient conditions are obtained and some of the results in the literatures are improved and extended.
作者 赵丽琴
出处 《Acta Mathematica Scientia》 SCIE CSCD 2007年第2期338-346,共9页 数学物理学报(B辑英文版)
基金 The project is sponsored by National Science Foundation of China (10671020)
关键词 BOUNDEDNESS CONVERGENCE differential equation Boundedness, convergence, differential equation
  • 相关文献

参考文献4

二级参考文献21

  • 1林发兴.Lienard方程周期解、概周期解的存在性[J].数学学报(中文版),1996,39(3):314-318. 被引量:21
  • 2李曾淑 王慕秋.关于Lienard方程零解的全局渐近稳定性[J].数学研究与评论,1985,5(2):67-70.
  • 3李惠卿.Lienard方程零解全局渐近稳定的充要条件[J].数学学报,1988,31(2):209-214.
  • 4李惠卿,数学学报,1988年,31卷,2期,209页
  • 5李曾淑,数学研究与评论,1982年,2卷,67页
  • 6Huang Lihong,Math Japon,1995年,42卷,2期,283页
  • 7Huang Lihong,Nonlinear Analysis,1994年,23卷,11期,1467页
  • 8Jiang Jifa,Annal Math Puru Appl,1993年,165卷,4期,29页
  • 9李惠卿,数学学报,1988年,31卷,2期,209页
  • 10李曾淑,数学研究与评论,1985年,5卷,2期,67页

共引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部