期刊文献+

GLOBALLY BOUNDED IN-TIME SOLUTIONS TO A PARABOLIC-ELLIPTIC SYSTEM MODELLING CHEMOTAXIS 被引量:3

GLOBALLY BOUNDED IN-TIME SOLUTIONS TO A PARABOLIC-ELLIPTIC SYSTEM MODELLING CHEMOTAXIS
下载PDF
导出
摘要 In this article, the globally bounded in-time pointwise estimate of solutions to the simplified Keller-Segel system modelling chemotaxis are derived. Moreover, a local existence theorem is obtained. In this article, the globally bounded in-time pointwise estimate of solutions to the simplified Keller-Segel system modelling chemotaxis are derived. Moreover, a local existence theorem is obtained.
作者 钟新华 江松
出处 《Acta Mathematica Scientia》 SCIE CSCD 2007年第2期421-429,共9页 数学物理学报(B辑英文版)
基金 Supported by the NSF of Jiangxi Province, the NSFC (10225105, 10671023) and a CAEP grant
关键词 Keller-Segel system CHEMOTAXIS globally bounded Keller-Segel system, chemotaxis, globally bounded
  • 相关文献

参考文献8

  • 1Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theor Biol, 1970,26:399-415
  • 2Chen Hua, Zhong Xinhua. Global existence and blow-up for the solutions to nonlinear parabolic-elliptic system modelling chemotaxis. IMA Journal of Applied Mathematics, 2005, 70:221-240
  • 3Nanjundiah V. Chemotaxis, signal relaying, and aggregation morphology. J Theor Biol, 1973, 42:63-105
  • 4Childress S, Percus J K. Nonlinear aspects of chemotaxis. Math Biosci, 1981, 56 217-237
  • 5Yagi A. Norm behavior of solutions to the parabolic system of chemotaxis. Math Japonica, 1997, 45241-265
  • 6Nagai T, Senba T, Yoshida K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcialaj Ekvacioj, 1997, 40:411-433
  • 7Sobolevskii P E. Equations of parabolic type in a Banach space. Am Math Soc Trans, 1996, 49:1-62
  • 8Lieberman G M. Second Order Parabolic Differential Equations. Singapore: World Scientific, 1996

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部