摘要
运用有限元特征值分析方法对应力波作用下直杆塑性分叉动力失稳问题进行了研究.基于应力波理论和相邻平衡准则导出了直杆塑性动力失稳时的有限元特征方程,方程中考虑了应力波效应及横向惯性效应,把直杆的塑性动力失稳问题归结为特征值问题.通过引入直杆塑性动力失稳时的波前约束条件实现了此类问题的有限元特征值解法.
Dynamic buckling of bars under plastic compression wave was studied by finite element method. The finite element characteristic equations were derived on the basis of the adjacent-equilibrium criterion, in which the compression wave propagation and the transverse inertia effect were taken into consideration. And by the use of the dynamic buckling supplementary restraint conditions at the compression wave front of bars at the instant when the buckling occurs, the critical-load and dynamic buckling modes of bars are calculated from the solutions of the finite element characteristic equations.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第4期113-115,共3页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(10272114)
关键词
应力波
直杆
动力屈曲
有限元
特征值
塑性
stress wave
bars
dynamic buckling
finite element
eigenvalue
plasticity