期刊文献+

概率隐形传态中客户透明特性的分析

Clients Transparency Properties in Probabilistic Teleportation
下载PDF
导出
摘要 给出了基于客户/服务模式概率隐形传态的一个双边协议,它达到成功隐形传态的最大概率.证明了Schmidt分解为∑from j=1 to d ∑from i=1 to d ∑from k=1 to n ujibivik|j〉|k〉的部分纠缠共享量子信道对客户端是透明的;对于一般化部分纠缠量子信道,客户必需知道一个局域幺正算子,将量子信道变换为客户端透明的量子信道,才能执行概率隐形传态. Abstract: A bidirectional protocol of probabilistic teleportation on the clients/server model is proposed, leading to the maximal probability of successful teleportation. It is proved that the partially entangledquantum channel ∑j=1^d∑i=1^d∑k=1^n jjibivik|j〉|k〉 by the Schmidt decomposition is transparent to the clients. To perform probabilistic teleportation via the generally entangled quantum channel, the clients must know a unitary operator that transforms the quantum channel into the clients' transparent quantum channel.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2007年第2期42-45,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家"863计划"项目(2006AA01Z419) 国家自然科学基金重大研究计划项目(90604023) 高等学校博士学科点专项科研基金项目(20040013007) 现代通信国家重点实验室基金项目(9140C1101010601) ISN开放基金项目 国家自然科学基金项目(60373059)
关键词 隐形传态 量子通信 量子测量 teleportation quantum communication quantum measurement
  • 相关文献

参考文献12

  • 1Bennett C H,Brassard G,Crepeau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys Rev Lett,1993,70(13):1895-1899.
  • 2Peres A.Quantum theory:concepts and methods[M].Dordrecht:Kluwer Academic,1993:131-138.
  • 3Li W L,Li C F,Guo G C.Probabilistic teleportation and entanglement matching[J].Phys Rev A,2000,61(3):034301.
  • 4Son W,Lee J,Kim M S,et al.Conclusive teleportation of a d-dimensional unknown state[J].Phys Rev A,2001,64(6):064304.
  • 5Hsu L Y.Optimal information extraction in probabilistic teleportation[J].Phys Rev A,2002,66(1):012308.
  • 6Fang Jianxing,Lin Yinsheng,Zhu Shiqun,et al.Probabilistic teleportation of a three-particle state via three pairs of entangled particles[J].Phys Rev A,2003,67(1):014305.
  • 7Bennett C H,Bernstein H J,Popescu S,et al.Concentrating partial entanglement by local operations[J].Phys Rev A,1996,53(4):2046-2052.
  • 8Bennett C H,Brassard G,Popescu S,et al.Purification of noisy entanglement and faithful teleportation via noisychannels[J].Phys Rev Lett,1996,76(5):722-725.
  • 9Vogel K,Risken H.Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[J].Phys Rev A,1989,40(5):2847-2849.
  • 10Gisin N.Hidden quantum nonlocality revealed by local filters[J].Phys Lett A,1996,210(3):151-156.

二级参考文献11

  • 1秦素娟,刘太琳,温巧燕.基于纠缠交换和局域操作的量子秘密共享[J].北京邮电大学学报,2005,28(4):74-77. 被引量:8
  • 2郭奋卓,高飞,温巧燕,朱甫臣.一个基于Bell态的高效量子秘密共享协议[J].北京邮电大学学报,2005,28(6):120-122. 被引量:4
  • 3Guo Guoping,Guo Guangcan.Quantum secret sharing without entanglement[J].Physics Letters A,2003,310:247-251.
  • 4Xiao Li,Long Guilu,Deng Fuguo,et al.Efficient multiparty quantum-secret-sharing schemes[J].Physical Review A,2004,69:052307.
  • 5Wu Shengjun,Zhang Yongde.Multipartite pure-state entanglement and the generalized GHZ states[J].Physical Review A,2001,63:012308.
  • 6Kim Y H,Kulik S P,Shih Y.Bell state preparation using pulsed non-degenerate two-photon entanglement[J].Physical Review A,2001,63:060301.
  • 7Deng Fuguo,Long Guilu,Liu Xiaoshu.Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J].Physical Review A,2003,68:042317.
  • 8Gao Fei,Guo Fenzhuo,Wen Qiaoyan,et al.Quantum key distribution without alternative measurements and rotations[J].Physics Letters A,2006,349:53-58.
  • 9Hillery M,Buek V,Berthiaume A.Quantum secret sharing[J].Physical Review A,1999,59:1829-1834.
  • 10Karlsson A,Koashi M,Imoto N.Quantum entanglement for secret sharing and secret splitting[J].Physical Review A,1999,59:162-168.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部