摘要
考虑一阶中立型时滞微分方程d/dt[x(t)+p(t)x(t-τ)]+f(t,x(t-σ))=0,其中p∈C([t0,∞),R),q∈C([t0,∞),R+),τ,σ∈R+,f(t,x)是定义在[t0,+∞)×R上的连续函数,讨论了上述方程的解的振动性,得出了该方程的一切解振动的充分条件。
Considering the first-order neutral delay differential equation d/dt[x(t)+p(t)x(t-τ)]+f(t,x(t-σ))=0,p∈C([t0,∞),R),q∈C([t0,∞),R^+),τ,σ∈R^+,and f(t,x)is a continuous function of [t0,+∞)×RA sufficient condition is obtained guaranteeing every solution of the above equation.
出处
《石河子大学学报(自然科学版)》
CAS
2007年第1期116-118,共3页
Journal of Shihezi University(Natural Science)
关键词
中立型时滞微分方程
振动性
正解
neutral delay differential equation
oscillation
eventually positive solution