期刊文献+

共转化法获得无筛选标记的转PEPC、PPDK基因水稻恢复系纯合体 被引量:20

Generating Marker-free Transgenic Homozygous Rice Restorer Lines with PEPC and PPDK Genes by Agrobacterium-mediated Transformation Using Super Binary Vector
下载PDF
导出
摘要 用根癌农杆菌共转化的方法将pSB130/CK质粒[目的基因磷酸烯醇式丙酮酸羧化酶基因(PEPC)、磷酸丙酮酸二激酶基因(PPDK)与筛选标记潮霉素抗性基因HPT分别构建于2个T-DNA区]导入水稻恢复系R299,经PCR、Southern检测,筛选到T0代13个转基因植株。对T1~T3代转基因后代进行PCR跟踪鉴定,分离出无潮霉素抗性基因的转基因植株(PEPC+PPDK+HPT-),分离株系比率为15%~21%,分离株系中PEPC+PPDK+HPT-型单株分离频率为7.2%~10.0%。在T3代成功获得了无筛选标记的转基因纯合系3个(06D351,06D352和06D353),PEPC酶活性和光合速率分析结果表明,其PEPC活性比对照提高了1.5~4.9倍,光合速率提高了19%~40%,说明这些转基因纯系材料在水稻高光效育种上具有很大的应用价值。 Transgenic restorer lines of hybrid rice expressing PEPC and PPDK genes from maize were obtained by the method of Agrobacterium tumefociens mediated transformation using super binary vector pSB130/CK. PCR and Southern blotting analysis showed that three transgenic homozygous lines with PEPC and PPDK genes but HPT gene free (06D351, 06D352 and 06D353) were identified in T3 generation. From T1 to T3 generations, the proportions of segregated lines with the target genes but HPT free were 15% ~ 21% and those of segregated plants with the gene type of PEP- C^+ PPDK^+ HPT^- were 7.2% - 10.0% among the segregated lines. Primary results showed that the photosynthesis rate and the PEPC enzyme activity of the transgenic homozygous lines increased by 19% -40% and 1.5 to 4.9 times, respectively, compared with those of the wild type, indicating that these transgenic rice lines are of the great potential values in increasing photosynthesis for hybrid rice breeding.
出处 《杂交水稻》 CSCD 北大核心 2007年第2期57-63,共7页 Hybrid Rice
基金 香港卓越学科领域--植物与真菌生物科技项目 湖南省科技厅科技计划项目(05FJ4091)
关键词 水稻恢复系 共转化 C4基因 PEPC PPDK 高光效育种 rice restorer line Agrobacterium tumefociens media transformation C4 genes PEPC PPDK breeding of high photosynthetic rate
  • 相关文献

参考文献16

  • 1Ku M S B,Cho D H,Li X,et a1.Introduction of genes encoding C4 photosynthesis enzymes into rice plants:physiological consequences[A].Jamie A Goode,Derek Chadwick.Rice Biotechnology:Improving Yield,Stress Tolerance and Grain Quality[C].Chichester:Wiley,2001.100-116.
  • 2Delloaporta S L,Wood J,Hicks J B.A plant DNA mini-preparation:versionⅡ[J].Plant Mol Biol Report,1983,1(4):19-21.
  • 3Sambrook J,Fritsch E F,Maniatis T著.金冬雁,黎孟枫,等译.分子克隆:实验指南[M].第2版.北京:科学出版社,1995.
  • 4Ku M S B,Sakae A,Mika N.High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J].Natural Biotechnol,1999,17:76-80.
  • 5Depicker A,Herman L,Jacobs A,et a1.Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction[J].Mo1 Gen Genet,1985,201:477-484.
  • 6Komari T,Hiei Y,Saito Y,et a1.Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers[J].Plant J,1996,l0(1):165-174.
  • 7Miller M,Tagliani L,Wang N,et a1.High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system[J].Transgenic Res,2002,l1(4):38l-396.
  • 8周红艳,陈松彪,李旭刚,肖桂芳,魏晓丽,朱祯.利用双T-DNA载体系统培育无选择标记转基因烟草(英文)[J].Acta Botanica Sinica,2003,45(9):1103-1108. 被引量:6
  • 9Matthews P R,Wang M B,Waterhouse P M,et a1.Marker gene elimination from transgenic barley,using co-transformation with adjacent ′twin T-DNAs′on a standard Agrobacterium transformation vector[J].Mo1 Breeding,2001,7(3):195-202.
  • 10Sato S,Xing A Q,Ye X G,et a1.Production of linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean[J].Crop Sci,2004,44:646-652.

二级参考文献79

  • 1焦德茂,匡廷云,李霞,戈巧英,黄雪清,郝乃斌,白克智.Physiological characteristics of the primitive CO_(2) concentrating mechanism in PEPC transgenic rice[J].Science China(Life Sciences),2003,46(4):438-446. 被引量:12
  • 2王强,郝迺斌,白克智,卢从明,戈巧英,匡廷云,张其德,董凤琴.Characterization of photosynthesis,photoinhibition and the activities of C_4 pathway enzymes in a superhigh-yield rice,Liangyoupeijiu[J].Science China(Life Sciences),2002,45(5):468-476. 被引量:9
  • 3吴荣生,焦德茂,李黄振,颜景秀,童红玉.杂交稻旗叶衰老过程中超氧自由基与超氧物歧化酶活性的变化[J].中国水稻科学,1993,7(1):51-54. 被引量:21
  • 4[1]Ambros P F, Matzke A J M, Matzke M A. 1986. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J, 5:2073-2077.
  • 5[2]Bevan M. 1984. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res, 12:8711-8721.
  • 6[3]Chyi Y S, Jorgensen R A, Goldstein D, Tanksley S D, LoaizaFigueroa F. 1986. Locations and stability of Agrobacteriummediated T-DNA insertions in the Lycopersicon genome.Mol Genet, 24:64-69.
  • 7[4]Dale E C, Ow D W. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA, 88:10558-10562.
  • 8[5]Daley M, Knauf V C, Summerfelt K R, Turner J C. 1998. Cotransformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep, 17:489-496.
  • 9[6]Depicker A, Herman L, Jacobs A, Schell J, van Montague M.1985. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Gen Genet, 201:477-484.
  • 10[7]Gao Y-F(高越峰),Zhu Z(朱祯),Xiao G-F(肖桂芳),Zhu Y (朱玉),Wu Q(吴茜),Li X-H(李向辉).1998.Isolation of soybean kunitz trypsin inhibitor gene and its application in plant insect-resistant genetic engineering. Acta Bot Sin (植物学报), 40:405-411. (in Chinese with English abstract)

共引文献94

同被引文献459

引证文献20

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部