期刊文献+

沉积物中细菌叶绿素的环境指示意义 被引量:3

Environmental Implications of Pigments from Anoxygenic Phototrophic Bacteria in Sediments
下载PDF
导出
摘要 沉积物中的光合细菌与细菌叶绿素(BChl)包含着丰富的古湖泊和古海洋信息。对光合细菌的生存环境,BChl的分布、保存、演化规律等方面进行了阐述,并探讨了湖泊和海洋沉积物中BChl的环境指示意义。BChl作为厌氧光合细菌的主要色素,不但可以指示水体中厌氧光合细菌的演变,而且能够反映化变层深度变化和水体环境特征,揭示季节性和年际尺度的气候变化。同时,根据沉积物中BChl含量可以估算古气候环境下湖泊和海洋的厌氧初级生产力。 Dense populations of photosynthetic bacteria were discovered not only in water, but also in lacustrine and littoral sediments. The pigments of phototrophic bacteria have been becoming a hot topic of scientific interest since the 1940s. Anoxygenic phototrophic bacteria live in chemocline of meromictic lakes and sea, which is the interface between oxic and anoxic mixolimnion. Depth of the H2 S chemocline, which is related to paleoclimatic and paleoenvironmental changes sensitively, is reflected by bacteriochlorophylls (BChls) in the sediment core. This paper illuminates distribution and evolution of anoxygenic photosynthetic bacteria together with their pigments. HPLC is a popular measurement for pigments. Finally, the environmental implications of fossil pigments are discussed: (1) BChls can indicate the existence of photosynthetic prokaryote; (2) As the biomarker, BChls in sediments represent the depth changes of the H2S chemocline; (3) Anoxygenic photosynthetic pigments in sediments also can be used to reconstruct the historical record of anoxygenic primary production.
出处 《高校地质学报》 CAS CSCD 北大核心 2007年第1期23-29,共7页 Geological Journal of China Universities
基金 科技部973项目(2004CB720204)
关键词 沉积物 化变层 光合细菌 BChl sediments chemocline photosynthetic bacteria BChl
  • 相关文献

参考文献48

  • 1Antonio C,Eduardo V.1998.Carbon photoassimilation by sharply stratified phototrophic communities at the chemocline of Lake Arcas (Spain).FEMS Microbiology Ecology,25(1):11-22.
  • 2Arnheim K,Oelze J.1983.Differences in the control of bacteriochlorophyll formation by light and oxygen.Arch.Microbiol.,135:299-304.
  • 3Belcher J H,Fogg G E.1964.Chlorophyll derivatives in the sediments of two English lakes.In:Miyaka Y,T Koyama eds.Recent Researches in the Field of Hydrosphere.Atmosphere and Nuclear Geochemistry,Tokyo:Maruzen co.,39-48.
  • 4Bryantsev V A,Fashchuk,D Ya,Ayzatullin T A,et al.1988.Variation in the upper boundary of the hydrogen sulfide zone in the Black Sea:Analysis of field observation and modeling results.Oceanology,28:180-185.
  • 5Cohen-Bazire G,Sistrom,W R.1966.The prokaryotic photosynthetic apparatus.In:Vernon L P,Seely G R eds.The Chlorophylls.New York:Academic Press,313-341.
  • 6Cohen-Bazire G,Sistrom,W R,Stanier R Y.1957.Kinetic studies of pigment synthesis by non-sulfur purple bacteria.J.Cell.Comp.Physiol.,49:25-68.
  • 7Dickman M,Artuz I.1978.Mass mortality of photosynthetic bacteria as a mechanism for dark lamina formation in sediments of the Black Sea.Nature,275:191-195.
  • 8Drews G.1985.Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria.Microbiol.Rev.,49:59-70.
  • 9Fischer C,Wiggli M,Schanz F,et al.1996.Light environment and synthesis of bacteriochlorophyll by population of Chromatium okenii under natural environmental conditions.FEMS Microbiology Ecology.,21(1):1-9.
  • 10Fogg G E,Belcher J H.1961.Pigments from the bottom deposits of an English lake.New Phytol.,60:129-138.

共引文献1

同被引文献22

  • 1万晓樵,李罡,陈丕基,于涛,叶得泉.松辽盆地白垩纪青山口阶的同位素地层标志及其与海相Cenomanian阶的对比[J].地质学报,2005,79(2):150-156. 被引量:28
  • 2孟继武,侯尚公,杨军,曹锦荣.叶绿素C的光学性质[J].发光学报,1990,11(2):149-157. 被引量:2
  • 3Blna D., Gardian Z., Herbstova M. etal. Novel type of red- shifted chlorophyll a antenna complex from Chromera velia. II. Biochemistry and spectroscopy. Biochimica and Biophysica Aeta, 2014,2728( 14): 13- 19.
  • 4Buonasera K., Lambreva M., Rea G. et al. Technological app- lications of chlorophyll a fluorescence for the assessment of environmental pollutants. Analytical and Bioanalytical Chemi- stry,2011,401 (4): 1139- 1151.
  • 5Rudiger W.. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynthesis Research,2002,74(2):187-193.
  • 6Sakuraba Y., Yokono M., Akimoto S. et al. Deregulated chloro- phyllb synthesis reduces the energy transferrate between pho- tosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiology, 2010,51(6): 1055-1065.
  • 7Serpeloni J. M., Batista B. L., xic properties of chlorophyll b Angeli J. P. et al. Antigenoto- against cisplatin-induced DNA damage and its relationship with distribution of platinum and magnesium in vivo.Joumal of Toxicology Environmental Health, Part A,2013,76(6):345-353.
  • 8Dougherty T. J., Kaufman J. E., Goldfarb A. et al. Photorad- istion Therapy for the Treatment of Malignant Tumors. Cancer Research, 1978,38(8):2628-2635.
  • 9Kashiyama Y., Miyashita H., Ohkubo S. et al. Evidence of global chlorophyll d.Science,2008,321(5889):658.
  • 10Chen M., Li Y., Birch D. et al. A cyanobacterium that con- tains chlorophyll f-a red-absorbing photopigment. FEBS Letters,2012,586(19):3249- 3254.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部