摘要
引入了一类新的含(h,η)-单调算子和α-h-强单调算子的广义非线性混合拟变分包含,并建立了关于(h,η)-单调算子的广义图像收敛理论。依据广义图像收敛理论,并应用关于h,η-单调算子的预解算子技巧,作者提出了一种新的扰动迭代算法来解这类变分不等式。进而。研究了这类算法的收敛性和稳定性。结果是新的。并推广和统一了近期文献中的一些相关结论。
In this paper, we introduce a new generalized nonlinear mixed quasi-variational inclusion involving (h,η)-monotone mappings and a-h-strongly monotone mappings, and establish the generalized-graph-convergence theory about (h, η)- monotone mappings. Based on the generalized-graph-convergence theory, by using the resolvent operator technique about( h,η) -monotone mappings, we suggest a new perturbed iterative algorithm to compute approximate solutions of this class of variational inequality. Further-more , we also discuss the convergence and stability of the perturbed algorithm. Our results are new, unify and generalize some corresponding results in recent literatures.
出处
《重庆师范大学学报(自然科学版)》
CAS
2007年第2期10-15,共6页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.10471113)
重庆市科委自然科学基金(No.CSTC2005BB2097)
关键词
广义非线性
拟变分包含
单调算子
广义图像收敛
预解算子
扰动算法
稳定性
generalized nonlinear
mixed quasi-variational inclusion
monotone mapping
.quasi-graph-convergence
resolvent operator
perturbed algorithm
stability