摘要
设F为区域D上的亚纯函数族,k、m、q是正整数,p(w)=w^q+a_(q-1)(z)w^(q-1)+…+a_1(z)w是多项式,H(f,f,…f^(k))是满足r_H~*>0的微分多项式,a(z)、b(z)、c(z)是D上的解析函数,且a(z)≠b(z),6(z)≠0,c(z)≠0,如果对任意的f∈Ff的零点重数至少为K+1,p(f^(k))+H(ff,…f^(k))=a(z)(?)f(z)=0,p(f^(k))+H(f,f…f^(k))= b(z)(?)f(z)=c(z),则F在D上正规。
Let F be a family of mermorphic functions in a domain D, and k,ra,q be positive integers,p(w) =w^q +aq-1 (z) w^q-1 + …a1 (z)w . Let H(f,f',...J^(k)) be a differential polynomial that satisfies rh^* 〉0,a(z) ,b(z) ,c(z) be some analytic functions in D. a (z) ≠ b (z), b (z) ≠ 0,c (z) ≠ 0. If for each, f ∈ F, all zeros of f are of multiplicity at least k + 1, and P (f^(k) ) + H(f,f ',... f^(k)) =a(z)→f(z) =0,P(f^(k)) + H(f,f '…f^(k) =b(z)→f(z) =c(z),then F is normal in D.
出处
《重庆师范大学学报(自然科学版)》
CAS
2007年第2期29-31,共3页
Journal of Chongqing Normal University:Natural Science
关键词
亚纯函数
微分多项式
正规族
Meromorphie function
differential polynomial
normal family